Chapter 1 SIMILARITY

LONG QUESTIONS

Base of a triangle is 9 and height is 5. Base of another triangle is 10 and height is 6. Find the ratio of areas of these triangles.

SOLUTION:

Let the base, height and area of the first triangle be b_1 , h_1 , and A_1 respectively.

Let the base, height and area of the second triangle be b_2 , h_2 and A_2 respectively.

$$\frac{A_1}{A_2} = \frac{(b_1 \times h_1)}{(b_2 \times h_2)}$$

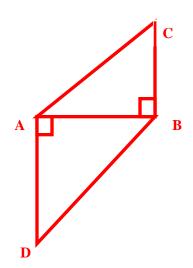
$$\frac{A_1}{A_2} = \frac{9 \times 5}{10 \times 6} = \frac{45}{60}$$

$$\frac{A_1}{A_2} = \frac{3}{4}$$

Ans.: The ratio of areas of triangles is 3:4

In the adjoining figure, BC \perp AB, AD \perp AB, BC = 4,

AD = 8, then find
$$\frac{A (\Delta ABC)}{A (\Delta ADB)}$$



SOLUTION:

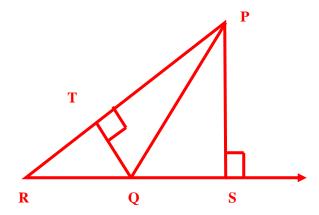
 \triangle ABC and \triangle ADB have same base AB.

$$\frac{A (\Delta ABC)}{A (\Delta ADB)} = \frac{BC}{AD} = \frac{4}{8}$$

$$\frac{A (\Delta ABC)}{A (\Delta ADB)} = \frac{1}{2}$$

Ans.: Ratio of area of $\triangle ABC$ to $\triangle ADB$ is 1:2

In the figure, seg PS \perp seg RQ, seg QT \perp seg PR. If RQ = 6, PS = 6 and PR = 12, then find QT.



SOLUTION:

In $\triangle PQR$, PR is the base and QT is the corresponding height.

Also, RQ is the base and PS is the corresponding height.

$$\frac{A (\Delta PQR)}{A (\Delta PQR)} = \frac{PR \times QT}{RQ \times PS}$$

[Ratio of areas of two triangles is equal to the ratio of the product of their bases and corresponding heights]

$$\therefore \frac{1}{1} = \frac{PR \times QT}{RQ \times PS}$$

$$\therefore PR \times QT = RQ \times PS$$

$$\therefore 12 \times QT = 6 \times 6$$

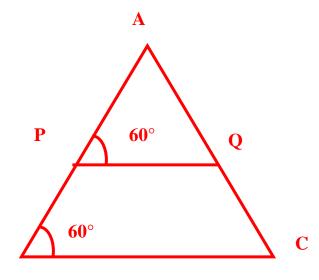
$$\therefore QT = \frac{36}{12} = 3$$

Ans.: QT = 3 units

Q. 4

Measures of some angles in the figure are given.

Prove that
$$\frac{AP}{PB} = \frac{AQ}{QC}$$



SOLUTION:

Proof

$$\angle APQ = \angle ABC = 60^{\circ}$$
 [Given]

- ∴ ∠APQ ≅ ∠ABC
- ∴ side PQ || side BC (i) [Corresponding angles test]

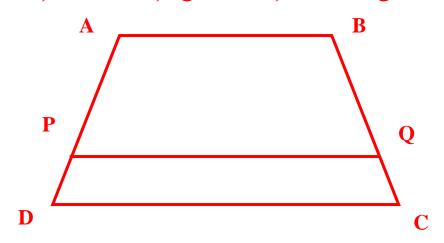
In $\triangle ABC$,

side PQ | side BC [From (i)]

$$\therefore \frac{AP}{PB} = \frac{AQ}{OC}$$
 [Basic proportionality theorem]

Q. 5

In trapezium ABCD, side AB \parallel side PQ \parallel side DC, AP = 15, PD = 12, QC = 14, find BQ.



SOLUTION:

side AB || side PQ || side DC [Given]

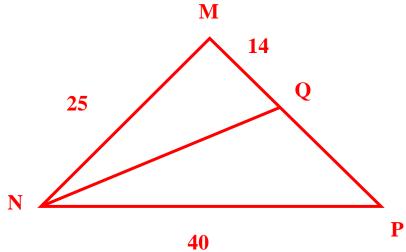
∴ AP/PD = BQ/QC [Property of three parallel lines and their transversals]

$$\therefore 15/12 = BQ/14$$

:
$$BQ = 15 \times 14 / 12$$

Q. 6

Find QP using given information in the figure.



SOLUTION:

In \triangle MNP, seg NQ bisects \angle N [Given]

$$\therefore \frac{PN}{MN} = \frac{QP}{MQ}$$

[Property of angle bisector of a triangle]

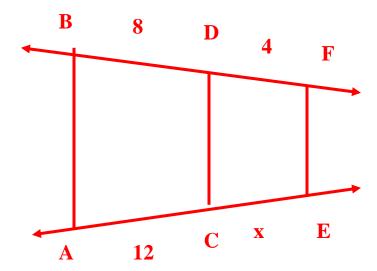
$$\therefore \frac{40}{25} = \frac{QP}{14}$$

$$\therefore QP = \frac{(40 \times 14)}{25} = 22.4$$

$$\therefore$$
 QP = 22.4 units

Q. 7

In the adjoining figure, if $AB \parallel CD \parallel FE$, then find x and AE.



SOLUTION:

line AB || line CD || line FE [Given]

$$\therefore \frac{BD}{DF} = \frac{AC}{CE}$$

[Property of three parallel lines and their transversals]

$$34 = 12x$$

$$\therefore x = 12 \times 48$$

$$x = 6$$
 units

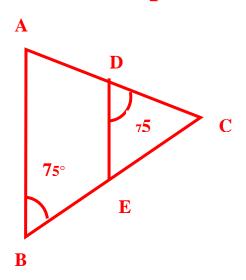
Now, AE AC + CE [A - C - E]

$$= 12 + x$$

$$= 12 + 6$$

$$x = 6$$
 units and $AE = 18$ units

In the adjoining figure, $\angle ABC = 75^{\circ}$, $\angle EDC = 75^{\circ}$. State which two triangles are similar and by which test? Also write the similarity of these two triangles by a proper one to one correspondence.



SOLUTION:

In \triangle ABC and \triangle EDC,

 $\angle ABC \cong \angle EDC$ [Each angle is of measure 75°]

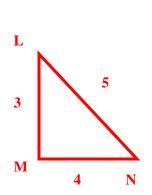
 $\angle ACB \cong \angle ECD$ [Common angle]

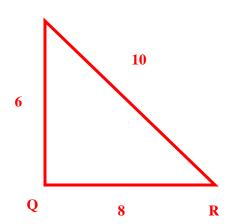
 $\therefore \triangle ABC \sim \triangle EDC$ [AA test of similarity]

One to one correspondence is $ABC \leftrightarrow EDC$

Are the triangles in the adjoining figure similar? If yes, by which test?

P





SOLUTION:

In $\triangle PQR$ and $\triangle LMN$,

$$\frac{PQ}{LM} = \frac{6}{3} = \frac{2}{1}$$
 (i)

$$\frac{QR}{MN} = \frac{8}{4} = \frac{2}{1} \tag{ii}$$

$$\frac{PR}{LN} = \frac{10}{5} = \frac{2}{1} \tag{iii}$$

$$\therefore \frac{PQ}{LM} = \frac{QR}{MN} = \frac{PR}{LN}$$
 [From (i), (ii) and (iii)]

∴ ΔPQR ~ ΔLMN [SSS test of similarity]

Q. 10

As shown in the adjoining figure, two poles of height 8 m and 4 m are perpendicular to the ground. If the length of shadow of smaller pole due to sunlight is 6 m, then how long will be the shadow of the bigger pole at the same time?

SOLUTION:

Here, AC and PR represents the bigger and smaller poles, and BC and QR represents their shadows respectively.

Now, $\triangle ACB \sim \triangle PRQ$ [: Vertical poles and their shadows form similar figures]

 $\therefore \frac{CB}{RQ} = \frac{AC}{PR} [Corresponding sides of similar triangles]$

$$\therefore \frac{x}{6} = \frac{8}{4}$$

$$\therefore \mathbf{x} = \frac{8 \times 6}{4}$$

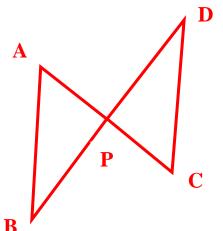
$$\therefore x = 12 \text{ m}$$

: The shadow of the bigger pole will be 12 meters long at that time.

Q. 11

In the adjoining figure, seg AC and seg BD intersect each other in point P and APCP = BPDP Prove that,

 $\triangle ABP \sim \triangle CDP$



SOLUTION:

Proof:

In \triangle ABP and \triangle CDP,

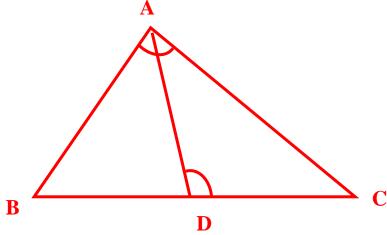
APCP = BPDP [Given]

 $\angle APB \cong \angle CPD$ [Vertically opposite angles]

∴ \triangle ABP \sim \triangle CDP [SAS test of similarity]

Q. 12

In the adjoining figure, in $\triangle ABC$, point D is on side BC such that, $\angle BAC = \angle ADC$. Prove that, $CA^2 = CB \times CD$,



SOLUTION:

Proof:

In \triangle BAC and \triangle ADC,

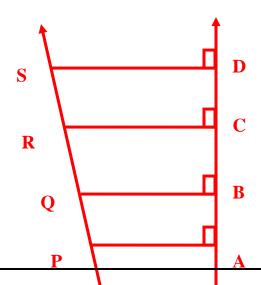
 $\angle BAC \cong \angle ADC [Given]$

 $\angle BCA \cong \angle ACD$ [Common angle]

- $\therefore \triangle BAC \sim \triangle ADC$ [AA test of similarity]
- $\therefore \frac{CA}{CD} = \frac{CB}{CA} [Corresponding sides of similar triangles]$
- \therefore CA \times CA = CB \times CD
- $\therefore \mathbf{C}\mathbf{A}^2 = \mathbf{C}\mathbf{B} \times \mathbf{C}\mathbf{D}$

Q. 13

In the figure, seg PA, seg QB, seg RC and seg SD are perpendicular to line AD. AB = 60, BC = 70, CD = 80, PS = 280, then find PQ, QR and RS.



В

 \mathbf{A}

SOLUTION:

seg PA, seg QB, seg RC and seg SD are perpendicular to line AD. [Given]

∴ seg PA || seg QB || seg RC || seg SD (i) [Lines perpendicular to the same line are parallel to each other]

Let the value of PQ be x and that of QR be y. PS = PQ + QS[P - Q - S]

$$\therefore$$
 280 - x + QS

$$\therefore QS = 280 - x (ii)$$

Now, seg PA | seg QB | seg SD [From (i)]

 $\therefore \frac{AB}{BD} = \frac{PQ}{QS}$ [Property of three parallel lines and their

transversals]

$$\therefore \frac{AB}{BC+CD} = \frac{PQ}{QS} [B - C - D]$$

$$\therefore \frac{60}{70+80} = \frac{x}{280-x}$$

$$\therefore \frac{60}{150} = \frac{x}{280-x}$$

$$\therefore \frac{2}{5} = \frac{x}{280-x}$$

$$\therefore 5x = 2(280 - x)$$

$$\therefore 5x = 560 - 2x$$

$$\therefore 7x = 560$$

$$\therefore x = \frac{560}{7} = 80$$

$$\therefore$$
 PQ = 80 units

$$QS = 280 - x [From (ii)]$$

$$= 280 - 80$$

But,
$$QS = QR + RS[Q - R - S]$$

$$\therefore 200 = y + RS$$

$$\therefore RS = 200 - y (ii)$$

Now, seg QB | seg RC | seg SD [From (i)]

 $\therefore \frac{BC}{CD} = \frac{QR}{RS}$ [Property of three parallel lines and their

transversals]

$$\therefore \frac{70}{80} = \frac{y}{200-y}$$

$$\therefore \frac{7}{8} = \frac{y}{200-y}$$

$$\therefore 8y = 7(200 - y)$$

$$\therefore 8y = 1400 - 7y$$

$$\therefore 15y = 1400$$

$$\therefore y = \frac{1400}{15} = \frac{280}{3}$$

$$\therefore$$
 QR = $\frac{280}{3}$ units

$$RS = 200 - 7 \qquad [From (iii)]$$

$$= 200 - \frac{280}{3}$$

$$= \frac{(200 \times 3 - 280)}{3}$$

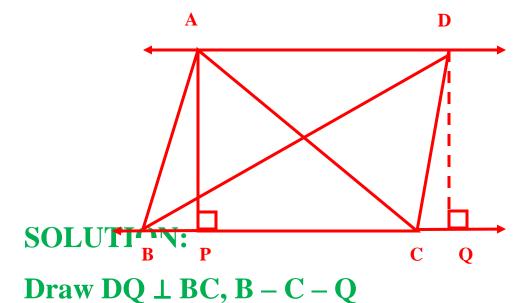
$$= \frac{(600 - 280)}{3} = \frac{320}{3}$$

 \therefore RS = 320/3 units

Ans.: PQ = 80 units, QR = 280/3 units, RS = 320/3 units

Q. 14

In the adjoining figure, AP \perp BC, AD \parallel BC, then find A (\triangle ABC) : A (\triangle BCD).



AD || BC [Given]

∴ AP = DQ [Perpendicular distance between two parallel lines is the same]

 \triangle ABC and \triangle BCD have same base BC.

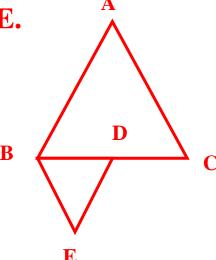
$$\frac{A(\Delta ABC)}{A(\Delta BCD)} = \frac{AP}{DQ} = \frac{AP}{AP} = 1$$

Ans.: A (\triangle ABC): A (\triangle BCD) = 1:1

Q. 15

SOLUTION:

$$\frac{A (\Delta ABC)}{A (\Delta BDE)} = \frac{BC^2}{BD^2}$$

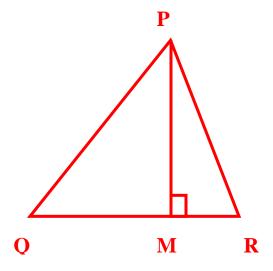


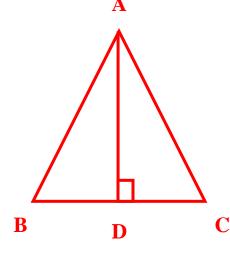
$$= \frac{2(BD)^2}{BD^2}$$
 [Since BC = 2BD]

$$\frac{A (\Delta ABC)}{A (\Delta BDE)} = 4:1$$

Ans.:
$$\frac{A (\Delta ABC)}{A (\Delta BDE)} = 4:1$$

 $\Delta ABC \sim \Delta PQR$. Area of $\Delta ABC = 64$ cm² and area of $\Delta PQR = 144$ cm². Find the altitude PM, if AD = 8 cm.





SOLUTION:

$$\frac{A(\Delta ABC)}{A(\Delta PQR)} = \frac{AD^2}{PM^2}$$

Ratio of areas of two triangles is equal to the ratio of the squares of corresponding heights.

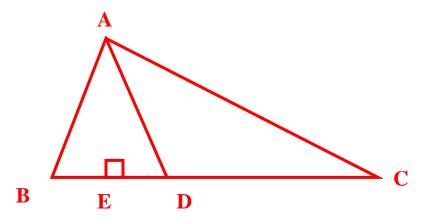
$$\frac{81}{121} = \frac{9^2}{PM^2}$$

Ans.: PM = 11

Q. 17

In $\triangle ABC$, B-D-C and BD = 7, BC = 20, then find

following ratio: $\frac{A (\Delta ABD)}{A (\Delta ABC)}$, $\frac{A (\Delta ABD)}{A (\Delta ADC)}$, $\frac{A (\Delta ADC)}{A (\Delta ABC)}$



SOLUTION:

Draw AE
$$\perp$$
 BC, B – E – C

$$BC = BD + DC [B - D - C]$$

$$\therefore 20 = 7 + DC$$

$$\therefore$$
 DC = 20 – 7 = 13

i. \triangle ABD and \triangle ADC have same height AE.

$$\frac{A (\Delta ABD)}{A (\Delta ADC)} = \frac{BD}{DC}$$
 [Triangles having equal height]

$$\therefore \frac{A (\Delta ABD)}{A (\Delta ADC)} = \frac{7}{13}$$

ii. \triangle ABD and \triangle ABC have same height AE.

$$\frac{A (\Delta ABD)}{A (\Delta ABC)} = \frac{BD}{BC}$$
 [Triangles having equal height]

$$\therefore \frac{A (\Delta ABD)}{A (\Delta ABC)} = \frac{7}{20}$$

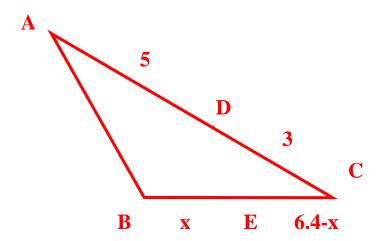
iii. \triangle ADC and \triangle ABC have same height AE.

$$\frac{A (\Delta ADC)}{A (\Delta ABC)} = \frac{DC}{BC}$$
 [Triangles having equal height]

$$\therefore \frac{A (\Delta ADC)}{A (\Delta ABC)} = \frac{13}{20}$$

Ans.:
$$\frac{A (\Delta ABD)}{A (\Delta ADC)} = \frac{7}{13}$$
, $\frac{A (\Delta ABD)}{A (\Delta ABC)} = \frac{7}{20}$, $\frac{A (\Delta ADC)}{A (\Delta ABC)} = \frac{13}{20}$

In the adjoining figure, A - D - C and B - E - C. seg DE || side AB. If AD = 5, DC = 3, BC = 6.4, then find BE.



SOLUTION:

In $\triangle ABC$, seg DE || side AB [Given]

$$\therefore \frac{DC}{AD} = \frac{EC}{BE} [Basic proportionality theorem]$$

$$\therefore \frac{3}{4} = \frac{(6.4 - x)}{x}$$

$$\therefore 3x = 5 (6.4 - x)$$

$$\therefore 3x = 32 - 5x$$

$$38x = 32$$

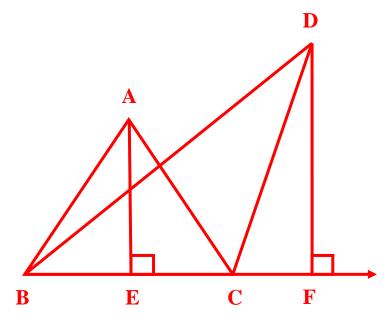
$$\therefore x = 32/8$$

$$\therefore x = 4$$

$$\therefore$$
 BE = 4 units

In the given figure, AE \perp seg BC, seg DF \perp line BC,

AE = 4, DF = 6, then find
$$\frac{A (\Delta ABC)}{A (\Delta DBC)}$$



SOLUTION:

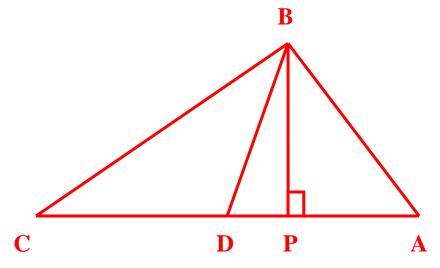
$$\frac{A (\Delta ABC)}{A (\Delta DBC)} = \frac{AE}{DF}$$
 (bases are equal; hence areas

are proportional to heights)

$$\frac{A (\Delta ABC)}{A (\Delta DBC)} = \frac{4}{6} = \frac{2}{3}$$

In the following figure in \triangle ABC, point D is on side AC. If AC = 16, DC = 9 and BP \perp AC, then find the following ratios:

$$\frac{A (\triangle ABD)}{A (\triangle ABC)}$$
, $\frac{A (\triangle BDC)}{A (\triangle ABC)}$, $\frac{A (\triangle ABD)}{A (\triangle BDC)}$



SOLUTION:

In \triangle ABC, point P and D are on side AC, hence B is the common vertex of \triangle ABD, \triangle BDC, \triangle ABC and \triangle APB and their sides AD, DC, AC, and AP are collinear. Heights of all the triangles are equal. Hence, areas of these triangles are proportional to their bases. AC = 16, DC = 9

$$\therefore AD = 16 - 9 = 7$$

$$\therefore \frac{A (\triangle ABD)}{A (\triangle ABC)} = \frac{AD}{AC} = \frac{7}{16}$$

$$\frac{A (\triangle ABD)}{A (\triangle ABC)} = \frac{DC}{AC} = \frac{9}{16}$$

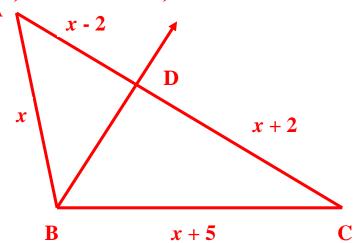
$$\frac{A (\triangle ABD)}{A (\triangle ABC)} = \frac{AD}{DC} = \frac{7}{9}$$

Triangles having

Equal heights

Q. 21

In \triangle ABC, seg BD bisects \angle ABC. If AB = x, BC = x + 5, AD = x - 2, DC = x + 2, then find the value of x.



SOLUTION:

In \triangle ABC, ray BD bisects \angle ABC

.. by property of angle bisector of triangle,

$$\frac{AB}{BC} = \frac{AD}{DC}$$

$$\therefore \frac{x}{x+5} = \frac{x-2}{x+2}$$

$$\therefore x(x+2) = (x-2)(x+5)$$

$$\therefore x^2 + 2x = x(x+5) - 2(x+5)$$

$$\therefore x^2 + 2x = x^2 + 5x - 2x - 10$$

$$\therefore 2x = 3x - 10$$

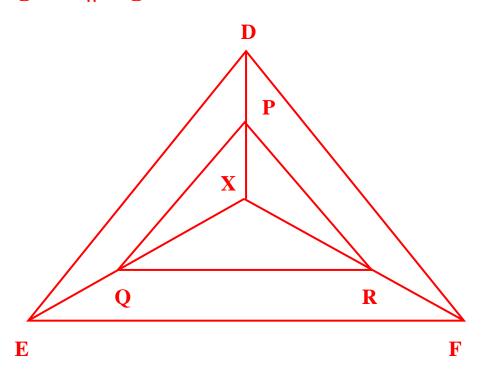
$$\therefore 2x - 3x = -10$$

$$\therefore -x = -10$$

$$\therefore x = 10$$

Q. 22

In the figure, X is any point in the interior of triangle. seg PQ \parallel seg DE, seg QR \parallel seg EF. Prove that seg PR \parallel seg DF.



SOLUTION:

In ∆ XDE, PQ || DE ... Given

$$\therefore \frac{XP}{PD} = \frac{XQ}{QE} \quad ... \quad (I) \quad (Basic proportionality theorem)$$

In ∆ XEF, QR || EF ... Given

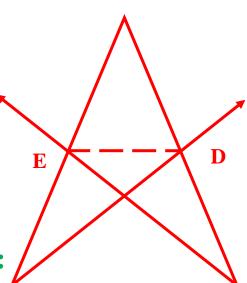
$$\therefore \frac{XQ}{OE} = \frac{XR}{RF} \quad ... \quad (II) \quad (Basic proportionality theorem)$$

$$\therefore \frac{XP}{PD} = \frac{XR}{RF} \dots From (I) & (II)$$

∴ seg PR || seg DF ... (Converse of basic proportionality theorem)

Q. 23

In \triangle ABC, ray BD bisects \angle ABC and ray CE bisects \angle ACB. If seg AB \cong seg AC; then prove that ED \parallel BC.



SOLUTION:

In \triangle ABC, B \vee BD is the bisector C \cap \cap ABC

.. by property of angle bisector of a triangle,

$$\frac{AB}{BC} = \frac{AD}{DC} \qquad \dots (1)$$

In \triangle ABC, ray CE is the bisector of \angle ACB

.. by property of angle bisector of a triangle,

$$\frac{AC}{BC} = \frac{AE}{EB} \qquad \dots (2)$$

 $seg AB \cong seg AC (Given)$... (3)

$$\therefore \frac{AB}{BC} = \frac{AC}{BC} \dots \text{ From (1), (2) & (3) } \dots \text{ (4)}$$

In
$$\triangle$$
 ABC, $\frac{AE}{EB} = \frac{AD}{DC}$... From (1), (2) & (4)

By converse of basic proportionality theorem, seg ED || side BC

i.e. ED || BC

Q. 24

In \triangle ABC, AP \bot BC, BQ \bot AC. B - P - C, A - Q - C; then prove that \triangle CPA \sim \triangle CQB. If AP = 7, BQ = 8, BC = 12; then find AC.

SOLUTION:

In \triangle CPA and \triangle CQB,

 $\angle CPA \cong \angle CQB$

... (Each measures 90°)

 $\angle ACP \cong \angle BCQ$

... (Common angle)

 $\therefore \triangle CPA \cong \triangle CQB$... (AA test of similarity)

 $\therefore \frac{AP}{BO} = \frac{AC}{BC}$... (Corresponding sides of similar

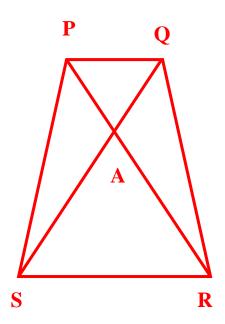
triangles are in proportion)

$$\therefore \frac{7}{8} = \frac{AC}{12}$$

$$\therefore AC \times 8 = 7 \times 12$$

$$\therefore$$
 AC = 10.5

In trapezium PQRS, side PQ \parallel side SR, AR = 5AP, AS = 5AQ; then prove that, SR = 5PQ.



SOLUTION:

Side PQ | side SR and line QS is the transversal

 $\therefore \angle PQS \cong \angle RSQ$... (Alternate angles theorem)

i.e. $\angle PQA \cong \angle RSA \dots (Q-A-S) \dots (1)$

In \triangle PQA and \triangle RSA,

 $\angle PQA \cong \angle RSA$... from (1)

$$\angle PAQ \cong \angle RAS$$

 $\angle PAQ \cong \angle RAS$... (Vertically opposite angles)

$$\therefore \triangle PQA \sim \triangle RSA$$

 $\therefore \triangle PQA \sim \triangle RSA$... (AA test of similarity)

$$\therefore \frac{PQ}{RS} = \frac{AQ}{AS} = \frac{AP}{AR}$$

 $\therefore \frac{PQ}{RS} = \frac{AQ}{AS} = \frac{AP}{AR} \qquad \dots \text{ (Corresponding sides of similar)}$

triangles are in proportion)

... (2)

$$AR = 5AP$$

Substituting (3) in (2) we get,

$$\frac{PQ}{SR} = \frac{AQ}{AS} = \frac{AP}{5AP}$$

$$\therefore \frac{PQ}{SR} = \frac{AQ}{AS} = \frac{1}{5}$$

... (4)

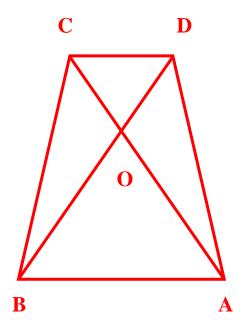
$$\therefore \frac{PQ}{SR} = \frac{1}{5}$$

... From (4)

$$\therefore SR = 5PQ$$

Q. 26

In trapezium ABCD, side AB \parallel side DC, diagonals AC and BD intersect in point O. If AB = 20, DC = 6, OB = 15, then find OD.



SOLUTION:

Side AB | side DC and line DB is the transversal,

 $\angle CDB \cong \angle ABD$... (Alternate angles theorem)

i.e. $\angle CDO \cong \angle ABO$... (B-O-D) ... (1)

In \triangle COD and \triangle AOB,

 \angle CDO \cong \angle ABO ... From (1)

$$\angle COD \cong \angle AOB$$
 ... (Vertically opposite angles)

∴
$$\triangle$$
 COD ~ \triangle AOB ... (AA test of similarity)

$$\therefore \frac{OD}{OB} = \frac{DC}{AB}$$
 ... (Corresponding sides of similar

triangles are in proportion)

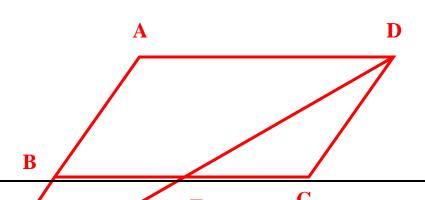
$$\therefore \frac{\text{OD}}{15} = \frac{6}{20}$$

$$\therefore$$
 OD x 20 = 6 x 15

$$\therefore$$
 OD = 4.5

Q. 27

□ ABCD is a parallelogram point E is on side BC.
 Line DE intersects ray AB in point T. Prove that DE
 x BE = CE x TE



SOLUTION:

Seg AB || seg CD ... (Opposite sides of parallelogram are parallel)

i.e. seg AT \parallel seg CD ... (A - B - T)

Line TD is the transversal,

 $\therefore \angle ATD \cong \angle CDT \dots$ (Alternate angles theorem)

i.e. \angle BTE \cong \angle CDE ... (A - B - T, T - E - D) ... (1)

In \triangle BET & \triangle CED,

 $\angle BTE \cong \angle CDE$... From (1)

 \angle BET \cong \angle CED ... (Vertically opposite angles)

∴ \triangle BET \sim \triangle CED ... (AA test of similarity)

$$\therefore \frac{BE}{CE} = \frac{TE}{DE}$$
 ... (Corresponding sides of similar

triangles are in proportion)

$$\therefore$$
 BE x DE = CE x TE

Q. 28

The ratio of corresponding sides of similar triangles is 3:5; then find the ratio of their areas.

SOLUTION:

Let the corresponding sides of two similar triangles be s_1 and s_2 and their respective areas be A_1 and A_2

$$s_1: s_2 = 3:5$$
 ... (Given)

$$\therefore \frac{s_1}{s_2} = \frac{3}{5} \qquad \dots (1)$$

The two triangles are similar

$$\therefore \frac{A_1}{A_2} = \frac{s_1^2}{s_2^2} \dots \text{ (Theorem of areas of similar triangles)}$$

$$\therefore \frac{A_1}{A_2} = \left(\frac{s_1}{s_2}\right)^2$$

$$\therefore \frac{A_1}{A_2} = \left(\frac{3}{5}\right)^2 \dots \text{ (From 1)}$$

$$\therefore \frac{A_1}{A_2} = \frac{9}{25}$$

$$A_1: A_2 = 9: 25$$

Ans.: The ratio of the areas of the two similar triangles is 9:25

Q. 29

Areas of two similar triangles are 225 sq.cm. and 81 sq.cm. If a side of the smaller triangle is 12 cm, then find corresponding side of bigger triangle.

SOLUTION:

Let the areas of two similar triangles be A1 and A2 and their respective sides be s1 and s2.

A1 = 225 sq.cm., A2 = 81 sq.cm. and s2 = 12 cm The two triangles are similar

... by theorem of areas of similar triangles,

$$\frac{A_1}{A_2} = \frac{{s_1}^2}{{s_2}^2}$$

$$\therefore \frac{225}{81} = \frac{{s_1}^2}{12^2}$$

$$\therefore s_1^2 = \frac{225 \times 12^2}{81}$$

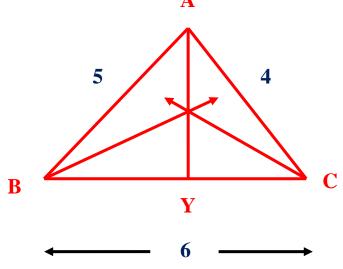
 $\therefore s_1 = \frac{15 \times 12}{9} \qquad \dots \text{ (Taking square roots on both the sides)}$

$$\therefore$$
 $s_1 = 20 \text{ cm}$

Ans.: The corresponding side of the bigger triangle is 20 cm.

Q. 30

In the figure, bisectors of \angle B and \angle C of \triangle ABC intersect each other in point X. Line AX intersects side BC in point Y. AB = 5, AC = 4, BC = 6 then find $\frac{AX}{XY}$



SOLUTON:

In \triangle ABY, ray BX bisects \angle ABY

∴ by property of angle bisector of triangle,

$$\frac{AB}{BY} = \frac{AX}{XY} \qquad \dots (1)$$

In \triangle ACY, ray CX bisects \angle ACY

.. by property of angle bisector of triangle,

$$\frac{AC}{CY} = \frac{AX}{XY} \qquad ... (2)$$

$$\frac{AB}{BY} = \frac{AC}{CY} = \frac{AX}{XY} \qquad ... From (1) and (2)$$

$$\therefore \frac{5}{BY} = \frac{4}{CY} = \frac{AX}{XY}$$

By theorem on equal ratios,

$$\frac{5+4}{BY+CY} = \frac{AX}{XY}$$

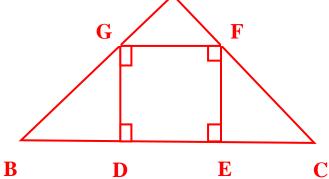
$$\therefore \frac{9}{BC} = \frac{AX}{XY} \qquad \dots (B - Y - C)$$

$$\therefore \frac{9}{6} = \frac{AX}{XY}$$

$$\therefore \frac{AX}{XY} = \frac{3}{2}$$

Q. 31

In figure, the vertices of square DEFG are on the sides of \triangle ABC. \angle A \triangle A90°. Then prove that DE² = BD x EC.



SOLUTION:

☐ **DEFG** is a square

$$\therefore DE = EF = GF = GD \dots (Sides of square) \dots (1)$$

$$\angle$$
 GDE = \angle DEF = 90° ... (Angles of a square)

 \therefore seg GD \perp side BC and seg EF \perp side BC

In \triangle BAC and \triangle BDG,

$$\angle BAC \cong \angle BDG$$
 ... (Each measures 90°)

$$\angle$$
 ABC \cong \angle DBG ... (Common angle)

$$\therefore \triangle BAC \sim \triangle BDG \qquad \dots (AA \text{ test of similarity}) \dots (2)$$

Similarly
$$\triangle$$
 BAC \sim \triangle FEC ... (3)

$$\therefore \triangle BDG \sim \triangle FEC$$
 ... From (2) and (3)

$$\therefore \frac{BD}{EF} = \frac{GD}{EC} \qquad ... \quad (Corresponding sides of similar)$$

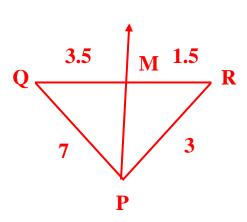
triangles are in proportion)

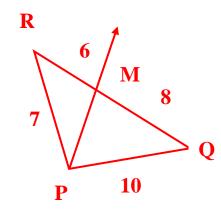
$$\therefore \frac{BD}{DE} = \frac{DE}{EC} \qquad \dots From (1)$$

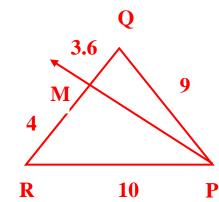
$$\therefore DE^2 = BD \times EC$$

Q. 32

Given below are some triangles and lengths of line segments. Identify in which figures, ray PM is the bisector of \angle QPR.







SOLUTION:

(i) In \triangle PQR,

$$\frac{PQ}{PR} = \frac{7}{3}$$

$$\frac{QM}{RM} = \frac{3.5}{1.5} = \frac{35}{15} = \frac{7}{3}$$
 ... (ii)

$$\therefore \frac{PQ}{PR} = \frac{QM}{RM}$$

... From (i) & (ii)

 \therefore Ray RM is the bisector of \angle QPR. (Converse of angle bisector theorem)

(ii) In \triangle PQR,

$$\frac{PQ}{PR} = \frac{10}{7}$$

$$\frac{QM}{RM} = \frac{8}{6} = \frac{4}{3}$$

$$\therefore \frac{PQ}{PR} \neq \frac{QM}{RM}$$

 \therefore Ray RM is not the bisector of \angle QPR.

(iii) In \triangle PQR,

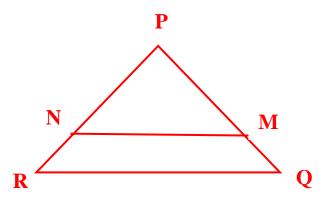
$$\frac{PQ}{PR} = \frac{9}{10}$$

$$\frac{QM}{RM} = \frac{3.6}{4} = \frac{36}{40} = \frac{9}{10}$$
 ... (ii)

$$\therefore \frac{PQ}{PR} = \frac{QM}{RM}$$

 \therefore Ray RM is the bisector of \angle QPR (Converse of angle bisector theorem)

In \triangle PQR, PM = 15, PQ = 25, NR = 8. State whether line NM is parallel to side RQ. Give reason.



SOLUTION:

$$PN + NR = PR [P - N - R]$$

$$\therefore PN + 8 = 20$$

$$\therefore$$
 PN = 12

Also,
$$PM + MQ = PQ [P - M - Q]$$

$$\therefore 15 + MQ = 25$$

$$\therefore$$
 MQ = 10

$$\frac{PN}{NR} = \frac{12}{8} = \frac{3}{2}$$
 ... (i)

$$\frac{PM}{MO} = \frac{15}{10} = \frac{3}{2}$$
 ... (ii)

In \triangle PQR,

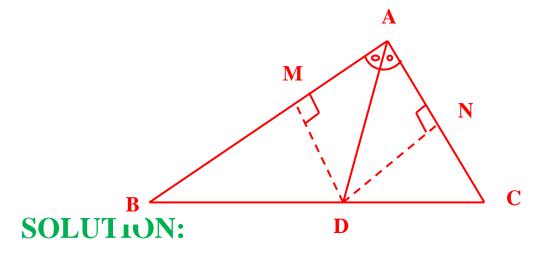
$$\frac{PN}{NR} = \frac{PM}{MQ} \qquad ... \text{ From (i) & (ii)}$$

:. Line NM || side RQ (Converse of basic proportionality theorem)

Q. 34

Use the following properties and write the proof as per the given diagram.

- i. The areas of two triangles of equal height are proportional to their bases.
- ii. Every point on the bisector of an angle is equidistant from the sides of the angle.



Given: In ∆ CAB, ray AD bisects ∠A

To prove: $\frac{AB}{AC} = \frac{BD}{DC}$

Construction: Draw seg DM \perp seg AB A – M – B and seg DN \perp seg AC, A – N – C.

Proof:

In $\triangle ABC$, Point D is on angle bisector of $\angle A$. [Given] \therefore DM = DN [Every point on the bisector of an angle is equidistant from the sides of the angle] $\frac{A(\triangle ABD)}{A(\triangle ACD)} = \frac{AB \times DM}{AC \times DN}$ [Ratio of areas of two triangles is equal to the ratio of the product of their bases and corresponding heights] ... (i)

$$\therefore \frac{A (\Delta ABD)}{A (\Delta ACD)} = \frac{AB}{AC} \qquad \qquad \dots (ii) [From (i)]$$

Also, \triangle ABD and \triangle ACD have equal height.

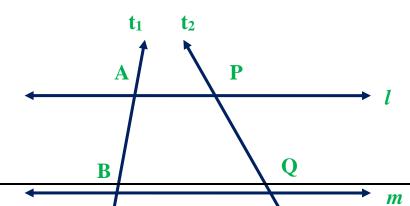
$$\therefore \frac{A (\Delta ABD)}{A (\Delta ACD)} = \frac{BD}{CD} \quad \text{(iii) [Triangles having equal height]}$$

$$\therefore \frac{AB}{AC} = \frac{BD}{DC}$$
 [From (ii) and (iii)]

Q. 35

- i. Draw three parallel lines.
- ii. Label them as l, m, n.
- iii. Draw transversals t1 and t2.
- iv. AB and BC are intercepts on transversal t1.
- v. PQ and QR are intercepts on transversal t2.
- vi. Find ratios $\frac{AB}{BC}$ and $\frac{PQ}{QR}$

AB = 1.5 cm, BC = 2.1 cm, PQ = 1.7 cm, QR = 2.3 cm You will find that they are almost equal. Verify that they are equal.



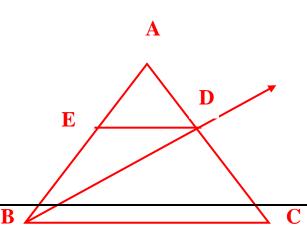
$$\frac{AB}{BC} = \frac{1.5}{2.1} = 0.714 = 0.7$$

$$\frac{PQ}{QR} = \frac{1.7}{2.3} = 0.739 = 0.7$$

$$\therefore \frac{AB}{BC} = \frac{PQ}{OR}$$

Q. 36

In $\triangle ABC$, ray BD bisects $\angle ABC$. A - D - C, side DE || side BC, A - E - B, then prove that $\frac{AB}{BC} = \frac{AE}{EB}$



SOLUTION:

In \triangle ABC, ray BD bisects \angle B ... Given

$$\therefore \frac{AB}{BC} = \frac{AD}{DC} \qquad \dots$$

 $\therefore \frac{AB}{BC} = \frac{AD}{DC}$... (i) Angle bisector theorem

In \triangle ABC, DE \parallel BC

... Given

$$\therefore \frac{AE}{EB} = \frac{AD}{DC}$$

 $\therefore \frac{AE}{EB} = \frac{AD}{DC}$... (ii) Basic proportionality theorem

$$\therefore \frac{AB}{BC} = \frac{AE}{EB}$$

 $\therefore \frac{AB}{BC} = \frac{AE}{EB} \qquad \dots \text{ From (i) & (ii)}$

Q. 37

 Δ LMN ~ Δ PQR, 9 × A (Δ PQR) = 16 × A (Δ LMN). If QR = 20, then find MN.

$$9 \times A(\Delta PQR) = 16 \times A(\Delta LMN)$$
 [Given]

$$\therefore \frac{A (\Delta LMN)}{A (\Delta POR)} = \frac{9}{16}$$

Now, \triangle LMN ~ \triangle PQR [Given]

$$\therefore \frac{A (\Delta LMN)}{A (\Delta PQR)} = \frac{MN^2}{QR^2}$$

... (ii) [Theorem of areas

of similar triangles]

$$\therefore \frac{MN^2}{QR^2} = \frac{9}{16}$$

... [From (i) and (ii)]

$$\therefore \frac{MN}{QR} = \frac{3}{4}$$

 $\therefore \frac{MN}{QR} = \frac{3}{4}$... [Taking square root of both sides]

$$\therefore \frac{MN}{20} = \frac{3}{4}$$

$$\therefore MN = \frac{20 \times 3}{4}$$

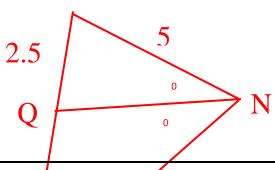
 \therefore MN = 15 units

Ans: MN = 15 units

Q. 38

In \triangle MNP, NQ is a bisector of \angle N. If MN = 5, PN =

7, MQ = 2.5, then find
$$P_{M}$$



SOLUTION:

In \triangle MNP, ray NQ bisects \angle MNP

∴ By property of triangle bisector of triangle,

$$=\frac{MQ}{QP}$$

$$\therefore \frac{MN}{NP} = \frac{MQ}{QP}$$

$$\therefore \frac{5}{7} = \frac{2.5}{QP}$$

$$\therefore \frac{5}{7} = \frac{2.5}{QP}$$

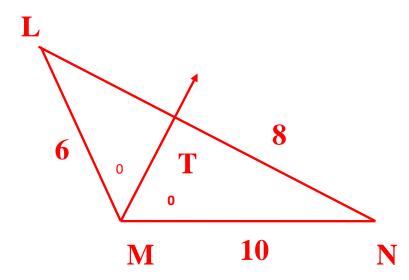
$$\therefore \mathbf{QP} = \frac{7 \times 2.5}{5}$$

$$\therefore \mathbf{QP} = 3.5$$

Ans.: QP = 3.5

Q. 39

In \triangle LMN, ray MT bisects \angle LMN. If LM = 6, MN = 10, TN = 8 then find LT



SOLUTION:

In \triangle LMN, ray MT bisects \angle LMN

: By property of angle bisector of triangle,

$$\frac{LM}{MN} = \frac{LT}{TN}$$

$$\therefore \frac{6}{10} = \frac{LT}{8}$$

$$\therefore$$
 LT x = 6 X 8

$$\therefore LT = \frac{6 \times 8}{108}$$

Ans.: LT= 4.8

Q. 40

 Δ LMN ~ Δ PQR, 9 x A (Δ PQR) = 16 x A (Δ LMN)

If QR = 20, then, find MN

SOLUTION:

 Δ LMN ~ Δ PQR

 $9 \times A (\Delta PQR) = 16 \times A (\Delta LMN)$

$$\therefore \frac{A(\Delta LMN)}{A(\Delta PQR)} = \frac{9}{16}$$

Now,
$$\frac{A(\Delta LMN)}{A(\Delta PQR)} = \frac{MN^2}{QR^2}$$

{Theorem of area of similar triangles}

$$\therefore \frac{9}{16} = \frac{MN^2}{QR^2}$$

$$\therefore \frac{MN}{QR} = \frac{3}{4}$$

(Taking square roots of both sides)

$$\therefore \frac{MN}{20} = \frac{3}{4}$$

$$\therefore MN = \frac{20 \times 3}{4}$$

Ans.: MN = 15

Q. 41

A (\triangle ABC) and A (\triangle DEF) are equilateral triangles.

If A (\triangle ABC) : A(\triangle DEF) = 1 : 2 and AB = 4. Find DE.

SOLUTION:

A (\triangle ABC) and A (\triangle DEF) are equilateral triangles.

$$\therefore$$
 \angle A = \angle B = \angle C = \angle D = \angle E = \angle F

(Angles of equilateral triangles)

In \triangle ABC and \triangle DEF

$$\angle A \cong \angle D$$
 ... (Each measures 60°)

$$\angle B \cong \angle E$$

 $\therefore \triangle ABC \sim \triangle DEF \qquad \dots (AA \text{ test of similarity})$

By theorem of areas of similar triangle

$$\frac{A(\Delta ABC)}{A(\Delta DEF)} = \frac{AB^2}{DE^2} \qquad \tag{1}$$

A (ΔABC) : A (ΔDEF) = 1 : 2 and AB = 4

(Given) (2)

$$\therefore \frac{1}{2} = \frac{4^2}{DE^2}$$

$$\therefore DE^2 = 4^2 \times 2$$

 \therefore DE = 4 $\sqrt{2}$... (Taking square roots of both sides)

Ans.: DE =
$$4\sqrt{2}$$

Q. 42

In figure seg PQ \parallel seg DE A (\triangle PQF) = 20 units,

PF = 2 DP, then find A (\square DPQE) by completing the following activity

SOLUTION:

A
$$(\Delta PQF) = 20$$
 units, PF = 2DP,

Let us assume DP = x

$$\therefore PF = 2x$$

$$\mathbf{DF} = \mathbf{DP} + \boxed{\mathbf{PF}} = \boxed{x} + \boxed{2x} = 3x$$

In \triangle FDE and \triangle FPQ

$$\angle$$
 FED = \angle FPQ(Corresponding angles)

 $\therefore \Delta$ FDE $\sim \Delta$ FPO

$$\therefore \frac{A(\Delta \text{ FDE})}{A(\Delta \text{ FPQ})} = \frac{DF^3}{PF^2} = \frac{(3X)^3}{(2X)^2} = \frac{9}{4}$$

$$A(\Delta FDE) = \frac{9}{4}A(\Delta FPQ) = \frac{9}{4}X$$
 20 = 45 units

$$A(\square DPQE) = A(\Delta FDE) - A(\Delta FPQ)$$

$$= \begin{bmatrix} 45 \\ - \end{bmatrix} = \begin{bmatrix} 25 \end{bmatrix}$$

(Note: Answers are in given green colour in the boxes inserted)

Q. 43

In figure \angle ABC = \angle DCB = 90^0 AB = 6, DC = 8;

Then
$$\frac{A(\Delta ABC)}{A(\Delta DCB)} = ?$$

A

B

\triangle ABC and \triangle DCB have same base BC

Areas of triangle with equal bases are proportional to their corresponding heights

$$\therefore \frac{A(\Delta ABC)}{A(\Delta DCB)} = \frac{AB}{DC}$$

$$\therefore \frac{A(\Delta ABC)}{A(\Delta DCB)} = \frac{6}{8}$$

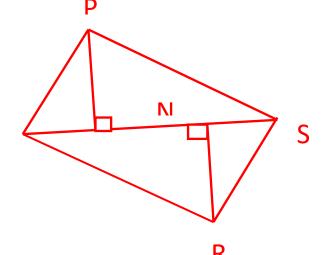
$$\therefore \frac{A(\Delta ABC)}{A(\Delta DCB)} = \frac{3}{4}$$

Ans.
$$\frac{A(\Delta ABC)}{A(\Delta DCB)} = \frac{3}{4}$$

Q. 44

In figure, PM = 10 cm, $A(\Delta PQS) = 10$ cm, $A(\Delta QRS)$

= 100 cm, then find NR



 \triangle PQS and \triangle QRS have same base QS.

Areas of triangles with equal bases are proportional to their corresponding heights.

$$\therefore \frac{A(\Delta PQS)}{A(\Delta QRS)} = \frac{PM}{RN}$$

$$\therefore \frac{100}{110} = \frac{10}{NR}$$

$$\therefore NR = \frac{110 \times 10}{100}$$

$$\therefore$$
 NR = 11cm

Ans: NR = 11cm

Q. 45

Ratio of areas of two triangles with equal heights is 2:3. If base of the similar triangle is 6 cm then what is the corresponding base of the bigger triangle?

Let the areas of triangles be A_1 and A_2

Let their respective bases be b_1 and b_2

$$A_1: A_2 = 2:3 \text{ and } b_1 = 6 \text{ } cm \dots \text{ (Given)}$$

The triangles are of equal height.

Area of triangle with equal heights is proportional to their corresponding bases.

$$\therefore \frac{A_1}{A_2} = \frac{b_1}{b_2}$$

$$\therefore \frac{2}{3} = \frac{6}{b_2}$$

$$\therefore b_2 = 9 cm$$

Ans.: The corresponding base of the bigger triangle is 9 cm.

Q. 46

In \triangle PQR, seg PM is a median. Angle bisectors of \angle PQM & \angle PMR intersect side PQ and side PR in

points X and Y respectively. Prove that XY || QR.

Complete the proof by filling in the boxes.

SOLUTION:

In \triangle PQM ray MX is bisector of \angle PMQ

$$\frac{\boxed{PM}}{\boxed{MQ}} = \frac{\boxed{PX}}{\boxed{X}}$$

$$\therefore \frac{2}{3} = \frac{6}{b_2}$$
 (I) theorem of angle bisector

In \triangle PMR ray MY is bisector of \angle PMR, then

$$\begin{array}{c|c}
PM & = & PY \\
\hline
MQ & YR
\end{array}$$

....(II) theorem of angle bisector

But

$$\frac{MP}{MO} = \frac{MP}{MR}$$
 M is the mid point of QR

Hence
$$MQ = MR$$

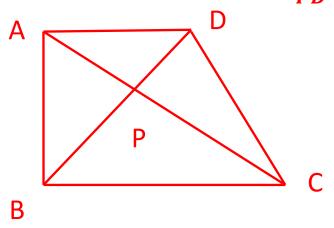
$$\therefore \frac{PX}{XQ} = \frac{PY}{YR}$$

∴XY || QR(Converse of basic proportionality theorem)

Ans.: Given in text boxes

Q. 47

In \square ABCD seg AD \parallel seg BC. Diagonal BD intersect each other in point P. Then show that $\frac{AP}{PD} = \frac{PC}{RP}$



SOLUTION:

seg AD || seg BC and line DB is transversal,

 $\angle ADP \cong \angle CBP$ (Alternate angle theorem)..... (1)

In \triangle ADP and \triangle CBP

∴
$$\triangle$$
 ADP ~ \triangle CBP(AA test of similarity)

$$\therefore \frac{AP}{CP} = \frac{PD}{BP}$$
 ...(Corresponding sides of similar

triangles in proportion)

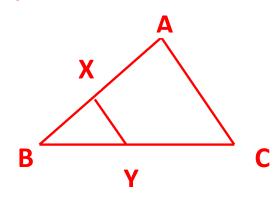
$$\therefore \frac{AP}{PD} = \frac{PC}{BP}$$

i.e.
$$\frac{AP}{PD} = \frac{PC}{RP}$$

Ans.:
$$\frac{AP}{PD} = \frac{PC}{RP}$$
 proved

Q. 48

In figure XY: seg AC. If 2AX = 3BX and XY = 9, complete the activity to find the value of AC



SOLUTION:

Activity

$$2AX = 3BX$$

$$\therefore \frac{AX}{BX} = \boxed{\frac{3}{2}}$$

$$\therefore AX + BX \qquad \boxed{3} + \boxed{2} \quad (by componendo)$$

\triangle BCA \sim \triangle BYX{A A test of similarity}

$$\therefore \frac{BA}{BX} = \frac{AC}{XY}$$

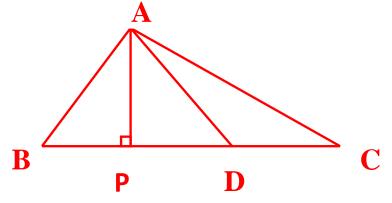
...(Corresponding sides of similar triangle)

$$\therefore \frac{5}{2} = \frac{AC}{9}$$

$$\therefore AC = \boxed{22} \qquad \dots (From (1)]$$

Q. 49

In \triangle ABC point D on side BC is such that DC = 6, BC = 15. Find A (\triangle ABD) : A (\triangle ABC) and A (\triangle ABD) :



SOLUTION:

Point A is common vertex of \triangle ABD, \triangle ADC & \triangle ABC their bases are collinear. Hence, heights of these triangles are equal.

$$BC = 15$$
, $DC = 6$, $\therefore BD = BC - DC = 15 - 6 = 9$

$$\frac{A (\Delta ABD)}{A (\Delta ABC)} = \frac{BD}{BC}$$
 ...heights equal hence areas

proportional to bases.

$$\frac{A (\Delta ABD)}{A (\Delta ABC)} = \frac{9}{15}$$

$$=\frac{3}{5}$$

$$\frac{A (\Delta ABD)}{A (\Delta ADC)} = \frac{BD}{DC}$$
 heights equal hence areas

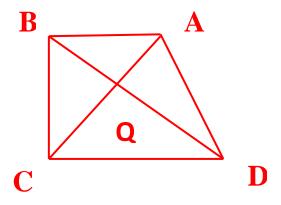
proportional to bases.

$$\frac{A (\Delta ABD)}{A (\Delta ADC)} = \frac{9}{6} = \frac{3}{2}$$

Ans:
$$\frac{A (\Delta ABD)}{A (\Delta ADC)} = \frac{3}{2}$$

Q. 50

Diagonals of quadrilateral ABCD intersect in point Q. If 2QA = QD, then prove that DC = 2 AB. Given 2QA = QC, 2QB = QD



SOLUTION:

$$2QA = QC$$
 $\therefore \frac{QA}{QC} = \frac{1}{2}$ (1)

2QB = **QD**
$$\therefore \frac{QB}{OD} = \frac{1}{2}$$
(2)

$$\therefore \frac{QA}{OC} = \frac{QB}{OD} \quad from (1) and (2)$$

In \triangle AQB & \triangle CQD

$$\frac{QA}{OC} = \frac{QB}{OD}$$
proved

$$\frac{XY}{MN} = \frac{14}{21} = \frac{2}{3}$$

 $\angle AQB \cong \angle CQD.....opposite angles$

 $\therefore \Delta AQB \sim \Delta CQD......$ (SAS test of similarity)

$$\therefore \frac{AQ}{CO} = \frac{QB}{OD} = \frac{AB}{CD}$$
 corresponding side are

proportional

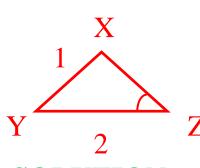
But
$$\frac{AQ}{CQ} = \frac{1}{2}$$
 :: $\frac{AQ}{CQ} = \frac{1}{2}$

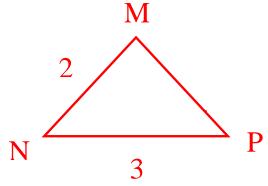
$$\therefore$$
 2AB = CD

$$2AB = CD$$
 proved

Q. 51

Can we say that the two triangles in the figures are similar, according to the information given? If yes, by which test? M





SOLUTION:

 $\Delta XYZ \& \Delta MNP$,

$$\frac{XY}{MN} = \frac{14}{21} = \frac{2}{3}$$

$$\frac{YZ}{NP} = \frac{20}{30} = \frac{2}{3}$$

It is given that $\angle Z \cong \angle P$

But \angle Z and \angle P are not included angle by sides which are not in proportion

 $\therefore \Delta XYZ \& \Delta MNP$ can not be said to be similar

Ans: \triangle XYZ & \triangle MNP can not be said to be similar