11.Circle

Practice Set 42

1. Complete the table below.

Sr. No.	Radius (r)	Diameter (d)	Circumference (c)
(i)	7 cm		
(ii)		28 cm	
(iii)			616 cm
(iv)			72.6 cm

Solution:

(i) Given: radius (r) =
$$7 \text{ cm}$$
, $d = ?$, $c = ?$

$$d = 2r = 2 \times 7 = 14 \text{ cm}$$

$$c = \pi d = \frac{22}{7} \times 14 = 44 \text{ cm}$$

(ii) Given:
$$r = ?$$
, $d = 28$ cm, $c = ?$

$$r = \frac{d}{2} = \frac{28}{2} = 14$$
 cm

$$c = \pi d = \frac{22}{7} \times 28 = 88 \text{ cm}$$

(iii) Given:
$$r = ?$$
, $d = ?$, $c = 616$ cm

$$c = \pi d$$

$$\therefore 616 = \frac{22}{7} \times d$$

$$d = \frac{616 \times 7}{22} = 28 \times 7 = 196 \text{ cm}$$

$$r = \frac{d}{2} = \frac{196}{2} = 98$$
 cm

(iv) Given:
$$r = ?$$
, $d = ?$, $c = 72.6$ cm

$$\therefore$$
 c = π d

$$\therefore 72.6 = \frac{22}{7} \times d$$

$$d = \frac{72.6 \times 7}{22} = 23.1 \text{ cm}$$

$$r = \frac{d}{2} = \frac{23.1}{2} = 11.55$$
 cm

Ans.

Sr. No.	Radius (r)	Diameter (d)	Circumference (c)
(i)	7 cm	<u>14 cm</u>	<u>44 cm</u>
(ii)	<u>14 cm</u>	28 cm	<u>88 cm</u>
(iii)	<u>98 cm</u>	<u>196 cm</u>	616 cm
(iv)	11.55 cm	<u>23.1 cm</u>	72.6 cm

2. If the circumference of a circle is 176 cm, find its radius.

Solution:

Given: Circumference (c) = 176 cm, radius (r) =?

$$c = 2\pi r$$

$$\therefore 176 = 2 \times \frac{22}{7} \times r$$

$$\therefore \mathbf{r} = \frac{176 \times 7}{2 \times 22} = 4 \times 7 = 28cm$$

: The radius of the circle is 28 cm.

3. The radius of a circular garden is 56 m. What would it cost to put a 4-round fence around this garden at a rate of 40 rupees per metre?

Solution:

The radius of a circular garden is 56 m.

The circumference of a circular garden = $2 \pi r$

$$=2 \times \frac{22}{7} \times 56 = 2 \times 22 \times 8 = 352$$
m

∴ The length of the wire required for one-round of fencing is 352m.

∴ The length of the wire required for 4-round of fencing =

$$352 \times 4 = 1408 \text{ m}$$

The cost of 1 m wire is 40 rupees.

 \therefore The cost of 1408 m wire = rate \times length of the wire

$$=40 \times 1408 = 56320$$

- ∴ The cost of 4-rounds of fencing around the garden is 56320 rupees.
- 4. The wheel of a bullock cart has a diameter of 1.4m. How many rotations will the wheel complete as the cart travels 1.1 km?

Solution:

Given: The diameter of wheel = 1.4 m

Travelling distance = $1.1 \text{ km} = 1.1 \times 1000 = 1100 \text{ m}$

Circumference of circle = πd

$$=\frac{22}{7}\times 1.4 = 4.4 \text{ m}$$

When the wheel completes one rotation it covers a distance of 1.4 m, (1 rotation = 1 circumference)

Total number of rotations = $\frac{Travelling\ distance}{circumference}$

$$=\frac{1100}{4.4}=\frac{11000}{44}=250$$

∴ The wheel completes 250 rotations to cover the distance of 1.1 km.

Practice Set 43

1. Choose the correct option.

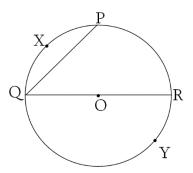
If arc AXB and arc AYB are corresponding arcs and

$$m(arc AXB) = 120^{\circ} then m(arc AYB) =$$

Solution:

Given: m (arc A
$$\times$$
 B) = 120°

The sum of the measures of two corresponding arcs is 360° . m (arc AXB) + m(arc AYB) = 360°


$$\therefore 120^{\circ} + m(arc AYB) = 360^{\circ}$$

$$\therefore$$
 m (arc AYB) = 360° - 120°

$$\therefore$$
 m (arc AYB) = 240°

Ans. The correct option is (iii) 240°.

2. Some arcs are shown in the circle with centre 'O'. Write the names of the minor arcs, major arcs and semicircular arcs from among them.

Ans.

- (i) Minor arcs: Arc PXQ, arc PR, arc RY, arc QY, arc QX, arc XP.
- (ii) Major arcs: Arc PQR, arc PYQ, arc RQY, arc XQP, arc QRX.
- (iii) Semicircular arcs: Arc QPR, arc QYR.
- 3. In a circle with centre O, the measure of a minor arc is 110°. What is the measure of the major arc PYQ? Solution:

Given: The measure of a minor arc = 110° m(minor arc PXQ) + m (major arc PYQ) = 360°

- \therefore 110⁰ + m (major arc PYQ) = 360⁰
- \therefore m (major arc PYQ) = $360^{\circ} 110^{\circ} = 250^{\circ}$
- \therefore The measure of a major arc PYQ is 250°.
