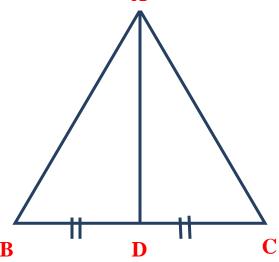
CHAPTER-2

PYTHAGORAS THEOREM

LONG QUESTIONS

Q. 1 (jeevandeep 188)

In the given figure, line AD is the median of \triangle ABC. $AB^2 + AC^2 = 160 \& BC = 8$. Then find the length of the median.



SOLUTION:

In Δ ABC, line AD is median, Point D is centre point of line BC

:. BD = DC =
$$\frac{BC}{2} = \frac{8}{2} = 4$$

By Apollonius theorem,

$$AB^2 + AC^2 = 2BD^2 + 2AD^2$$

$$\therefore 160 = 2(4)^2 + 2AD^2$$

$$\therefore 160 = 32 + 2AD^2$$

$$\therefore 160 - 32 = 2AD^2$$

$$\therefore 128 = 2AD^2$$

$$\therefore AD^2 = \frac{128}{2} = 64$$

$$\therefore AD^2 = 64$$

$$\therefore$$
 AD = $\sqrt{64}$

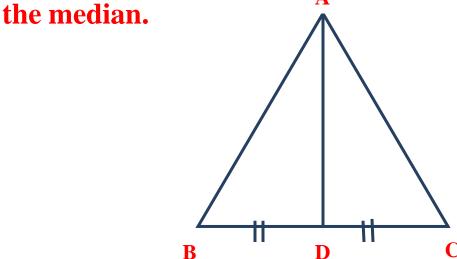
$$\therefore AD = 8$$

Ans.: Length of the median is 8 units.

Q. 2 (jeevandeep 182)

In the given figure, line AD is the median of \triangle ABC.

 $AB^2 + AC^2 = 410$ & BC = 12. Then find the length of



SOLUTION:

In Δ ABC, line AD is median, point D is centre point of line BC.

$$BD = DC = \frac{BC}{2} = \frac{12}{2} = 6$$

By Apollonius theorem,

$$AB^2 + AC^2 = 2BD^2 + 2AD^2$$

$$\therefore 410 = 2(6)^2 + 2AR^2$$

$$\therefore 410 = 72 + 2AD^2$$

$$\therefore 410 - 72 = 2AD^2$$

$$\therefore 338 = 2AD^2$$

$$\therefore AD^2 = \frac{338}{2} = 169$$

$$\therefore AD^2 = 169$$

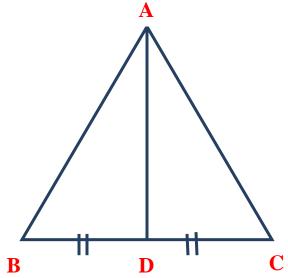
$$\therefore AD = \sqrt{169}$$

Ans.: Length of the median is 8 units.

Q. 3 (jeevandeep 154)

In the given figure, line AD is the median of Δ ABC.

 $AB^2 + AC^2 = 292$ & AD = 11. Then find the length BC.



SOLUTION:

In Δ ABC, line AD is median, point D is centre point of line BC.

$$\mathbf{BD} = \mathbf{DC} = \frac{BC}{2}$$

By Apollonius theorem,

$$AB^2 + AC^2 = 2BD^2 + 2AD^2$$

$$\therefore 292 = 2BD^2 + 2(11)^2$$

$$\therefore 292 = 242 + 2BD^2$$

$$\therefore 292 - 242 = 2BD^2$$

$$\therefore 50 = 2BD^2$$

$$BD^2 = \frac{50}{2} = 25$$

$$\therefore BD^2 = 25$$

$$\therefore \mathbf{BD} = \sqrt{25}$$

$$\therefore BD = 5$$

$$\therefore$$
 BC = 2 BD

$$\therefore$$
 BC = 2 X 5

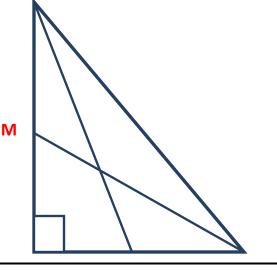
$$\therefore$$
 BC = 10 units

Ans.: Length of BC is 10 units.

Q. 4 (jeevandeep 130)

In the given figure, line AN & line CM are the medians of \triangle ABC, \angle B = 90°_{A} then prove that

$$4(AN^2 + CM^2) = 5AC^2$$



В

C

SOLUTION:

Line AN and CM are medians of \triangle ABC

$$AM = MB = \frac{1}{2} AB \& BN = CN = \frac{1}{2} BC$$

In \triangle ABC, by Pythagoras theorem,

$$AN^2 = AB^2 + BN^2$$

$$\therefore AN^2 = AB^2 + \left(\frac{1}{2}BC\right)^2$$

:.
$$AN^2 = AB^2 + \frac{1}{4}BC^2$$
 (1)

In \triangle MBC by Pythagoras theorem,

$$CM^2 = BC^2 + MB^2$$

$$CM^2 = BC^2 + \frac{1}{4}AB^2$$
 (2)

By (1) & (2),

$$AN^2 + CM^2 = AB^2 + \frac{1}{4}BC^2 + BC^2 + \frac{1}{4}AB^2$$

$$\therefore AN^2 + CM^2 = \frac{5}{4}AB^2 + \frac{5}{4}BC^2$$

$$\therefore 4(AN^2 + CM^2) = 5(AB^2 + BC^2) \quad (3)$$

In \triangle ABC by Pythagoras theorem,

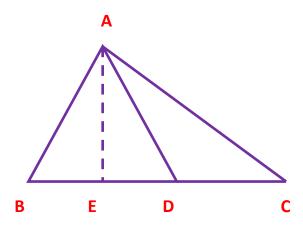
$$AB^2 + BC^2 = AC^2 \qquad \dots (4)$$

From (3) & (4),

$$4(AN^2 + CM^2) = 5AC^2$$

Q. 5 (jeevandeep 103)

In \triangle ABC, line AD is the median of triangle then prove that $AB^2 + AC^2 = 2AD^2 + 2BD^2$



SOLUTION:

In \triangle ABC, if \angle ADB $< 90^{\circ}$

By Pythagoras theorem,

$$AB^2 = AD^2 + BD^2 - 2 \text{ BD x DE}$$
 (1)

Now in \triangle ADC \angle ADC $> 90^{\circ}$

By Pythagoras theorem,

$$AC^2 = AD^2 + CD^2 - 2 DC X DE$$

$$AC^2 = AD^2 + BD^2 - 2 \text{ BD X DE}$$
 (2)

$$(as DC = BD)$$

By addition of (1) & (2),

$$AB^2 + AC^2 = 2AD^2 + 2BD^2$$

Proved that in \triangle ABC, if AD is median then,

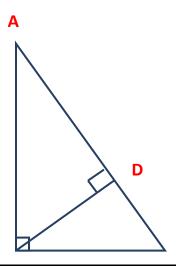
$$AB^2 + AC^2 = 2AD^2 + 2BD^2$$

Q. 6

In the given figure, \triangle ABC is a right angle triangle. \angle

ABC = 90°, seg BD \perp hypotenuse AC such that A-D-

C. Prove that $BD^2 = AD \times DC$



SOLUTION:

In \triangle ABC, \angle ABC = 90°

Seg BD [⊥] hypotenuse **AC**

- ∴ \triangle ADB ~ \triangle BDC ... (Similarity of right angled triangles)
- $\therefore \frac{AD}{BD} = \frac{BD}{DC} \qquad \dots \text{ (Corresponding sides of similar)}$

triangles are in proportion)

$$\therefore \mathbf{B}\mathbf{D}^2 = \mathbf{A}\mathbf{D} \times \mathbf{D}\mathbf{C}$$

Q. 7

Identify with reason, whether the following is a Pythagorean triplet: (3, 5, 4)

SOLUTION:

$$3^2 = 9$$
, $5^2 = 25$, $4^2 = 16$

$$\therefore 3^2 + 4^2 = 9 + 16 = 25$$

$$3^2 + 4^2 = 5^2$$

The square of the largest number is equal to the sum of the squares of the other two numbers.

Ans.: (3, 5, 4) is a Pythagorean triplet.

Q. 8

Identify with reason, whether the following is a Pythagorean triplet: (10, 24, 27)

SOLUTION:

$$10^2 = 100, 24^2 = 576, 27^2 = 729$$

$$10^2 + 24^2 = 100 + 576 = 676$$

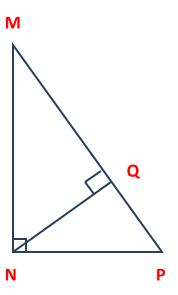
$$10^2 + 24^2 \neq 27^2$$

The square of the largest number is not equal to the sum of the squares of the other two numbers.

Ans.: (10, 24, 27) is not a Pythagorean triplet.

Q. 9

In the given figure, \angle MNP = 90°, seg NQ \perp seg MP, MQ = 9, QP = 4, find NQ.



SOLUTION:

In \triangle MNP, \angle MNP = 90° ... (Given) seg NQ $^{\perp}$ hypotenuse MP ... (Given)

.. By property of geometric mean

$$NQ^2 = MQ \times PQ$$

$$\therefore NQ^2 = 9 \times 4$$

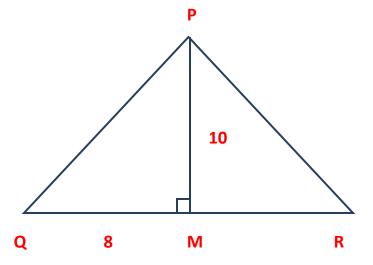
$$\therefore NQ^2 = 36$$

 \therefore NQ = 6 ... (Taking square roots on both the sides)

Ans.: NQ = 6

Q. 10

In figure, \angle QPR = 90°. Seg PM $^{\perp}$ seg QR and Q – M – R. PM = 10, QM = 8; find QR.



SOLUTION:

In \triangle QPR, \angle QPR = 90° ... (Given)

seg PM [⊥] hypotenuse QR ... (Given)

.. By property of Geometric mean,

 $PM^2 = QM \times MR$

$$\therefore 10^2 = 8 \times MR$$

$$\therefore \mathbf{MR} = \frac{100}{8}$$

$$\therefore$$
 MR = 12.5

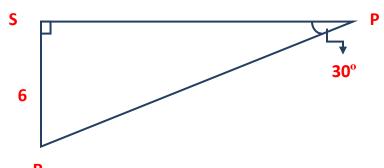
$$QR = QM + MR$$
 ... $(Q - M - R)$

$$\therefore \mathbf{QR} = \mathbf{8} + \mathbf{12.5}$$

$$\therefore \mathbf{QR} = 20.5$$

Q. 11

See figure. Find RP and PS using the information given in \triangle PSR.



SOLUTION:

In \triangle PSR, \angle PSR = 90° and \angle SPR = 30°

∴ \angle SRP = 60° ... (Remaining angle of a triangle)

 \therefore \triangle PSR is a 30° - 60° - 90° triangle

 \therefore By 30° - 60° - 90° triangle theorem,

 $SR = \frac{1}{2} RP$... (Side opposite to 30°)

$$\therefore 6 = \frac{1}{2} \times \mathbf{RP}$$

 \therefore RP = 6 x 2

$$\therefore RP = 12$$

$$\mathbf{PS} = \frac{\sqrt{3}}{2} \, \mathbf{RP}$$

... (Side opposite to 60°)

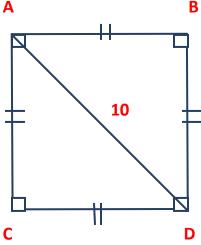
$$\therefore \mathbf{PS} = \frac{\sqrt{3}}{2} \times \mathbf{12}$$

$$\therefore PS = 6\sqrt{3}$$

Ans.: RP = 12 and PS = $6\sqrt{3}$

Q. 12

Find the side and perimeter of a square whose diagonal is 10 cm.



SOLUTION:

Let \square ABCD be the given square.

$$AC = 10 \text{ cm}$$

Let the side of the square be x cm.

$$\therefore AB = BC = x cm$$

In \triangle ABC, \angle ABC = 90° ... (Angle of a square)

:. By Pythagoras theorem,

$$AC^2 = AB^2 + BC^2$$

$$10^2 = x^2 + x^2$$

$$100 = 2x^2$$

$$\therefore x^2 = \frac{100}{2}$$

$$\therefore x^2 = 50$$

$$\therefore x = 5\sqrt{2}$$

$$\therefore AB = 5\sqrt{2} cm$$

 \therefore Side of square is $5\sqrt{2}$ cm.

Perimeter of a square $= 4 \times \text{side}$

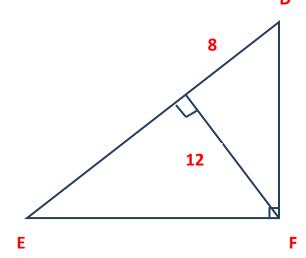
$$=4 \times 5\sqrt{2}$$

$$=20\sqrt{2}$$
 cm

Ans.: Side of a square is $5\sqrt{2}$ cm and its perimeter is $20\sqrt{2}$ cm

Q. 13

In figure, \angle DFE is 90°, FG \perp ED. If GD = 8, FG = 12, find (1) EG (2) FD and (3) EF



SOLUTION:

(1) In \triangle DFE, \angle DFE = 90° ... (Given) Seg FG \perp hypotenuse DE ... (Given)

.. by property of geometric mean,

$$FG^2 = DG \times EG$$

$$\therefore 12^2 = 8 \times EG$$

$$\therefore \mathbf{EG} = \frac{12 \times 12}{8}$$

$$\therefore$$
 EG = 18

(2) In
$$\triangle$$
 DGF, \angle DGF = 90° ... (Given)

.. By Pythagoras theorem,

$$FD^2 = DG^2 + GF^2$$

:.
$$FD^2 = 8^2 + 12^2$$

$$\therefore FD^2 = 64 + 144$$

$$\therefore \mathbf{FD}^2 = 208$$

$$\therefore \mathbf{FD} = 4\sqrt{13}$$

(3) In \triangle EGF, \angle EGF = 90°

.. By Pythagoras theorem,

$$\mathbf{E}\mathbf{F}^2 = \mathbf{E}\mathbf{G}^2 + \mathbf{G}\mathbf{F}^2$$

$$\therefore EF^2 = 18^2 + 12^2$$

$$\therefore EF^2 = 324 + 144$$

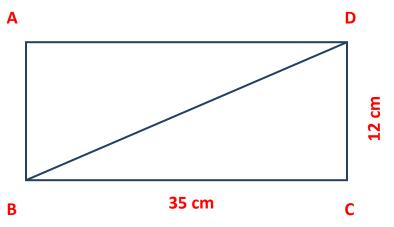
$$\therefore \mathbf{EF}^2 = 468$$

$$\therefore \mathbf{EF} = 6\sqrt{13}$$

Ans.: EG = 18, FD =
$$4\sqrt{13}$$
 and EF = $6\sqrt{13}$

Q. 14

Find the diagonal of a rectangle whose length is 35 cm and breadth is 12 cm.



SOLUTION:

Let \square ABCD be the given rectangle.

BC = 35 cm and CD = 12 cm

In \triangle BCD, \angle BCD = 90° ... (Angle of a rectangle)

.. By Pythagoras theorem,

$$BD^2 = BC^2 + CD^2$$

$$\therefore BD^2 = 35^2 + 12^2$$

$$\therefore BD^2 = 1225 + 144$$

∴
$$BD^2 = 1369$$

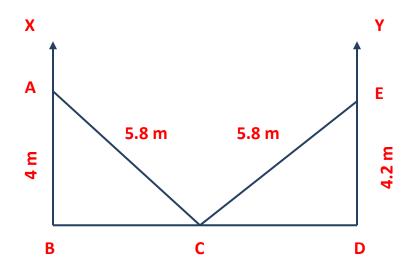
 \therefore BD = 37 cm

Ans.: The diagonal of rectangle is 37 cm

Q. 15

Walls of two buildings on either side of a street are parallel to each other. A ladder 5.8 m long is placed on the street such that its top just reaches the window of a building at a height of 4 m. On turning the ladder over to the other side of the street, its top touches the window of the other building at a height 4.2 m. Find the width of the street.

SOLUTION:



In the figure, seg XB and seg YD represent the walls of two buildings on either side of a street BD. Seg AC represents the first position of the ladder and seg CE represents the second position of the ladder.

AC = CE = 5.8 m, AB = 4 m and DE = 4.2 m
In
$$\triangle$$
 ABC, \angle ABC = 90°

:. By Pythagoras theorem,

$$AC^2 = AB^2 + BC^2$$

$$\therefore 5.8^2 = 4^2 + BC^2$$

$$\therefore$$
 33.64 = 16 + BC²

$$\therefore$$
 BC² = 33.44 – 16

$$\therefore$$
 BC² = 17.64

$$\therefore$$
 BC = 4.2 m

In
$$\triangle$$
 EDC, \angle EDC = 90°

:. By Pythagoras theorem,

$$CE^2 = DE^2 + CD^2$$

$$\therefore 5.8^2 = 4.2^2 + CD^2$$

$$\therefore$$
 CD² = 5.8² - 4.2²

$$\therefore$$
 CD² = 33.64 – 17.64

$$\therefore CD^2 = 16$$

$$\therefore$$
 CD = 4 m

$$BD = BC + CD$$

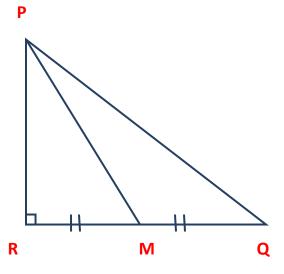
$$\therefore BD = 4.2 + 4$$

$$\therefore$$
 BD = 8.2 m

Ans.: Width of the street is 8.2 m.

Q. 16

In the figure, M is the midpoint of QR. \angle PRQ = 90°, prove that PQ² = 4PM² – 3PR²



SOLUTION:

In
$$\triangle$$
 PRQ, \angle PRQ = 90° ... (Given)

.. By Pythagoras theorem,

$$PQ^2 = PR^2 + QR^2$$
 ... (1)

In
$$\triangle$$
 PRM, \angle PRM = 90° ... (Given)

.. By Pythagoras theorem,

$$PM^2 = PR^2 + RM^2 \qquad \dots (2)$$

 $RM = \frac{1}{2} RQ \dots (M \text{ is the midpoint of seg } RQ) \dots (3)$

:.
$$PM^2 = PR^2 + (\frac{1}{2}RQ)^2$$
 ... [From (2) and (3)]

$$\therefore \mathbf{P}\mathbf{M}^2 = \mathbf{P}\mathbf{R}^2 + \frac{1}{4}\mathbf{R}\mathbf{Q}^2$$

Multiplying each term by 4 we get,

$$4PM^2 = 4PR^2 + RQ^2$$

$$\therefore 4PM^2 = 3PR^2 + (PR^2 + RQ^2)$$

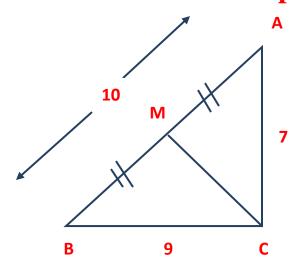
$$\therefore 4PM^2 = 3PR^2 + PQ^2$$

$$\therefore PQ^2 = 4PM^2 - 3PR^2$$

 $Ans: PQ^2 = 4PM^2 - 3PR^2$

Q. 17

In \triangle ABC, AB = 10, AC = 7, BC = 9 then find the length of the median drawn from point C to side AB.



SOLUTION:

Let seg CM be the median drawn from the vertex C to side AB.

... M is the midpoint of side AB ... (by definition of a median)

:.
$$AM = \frac{1}{2}AB = \frac{1}{2} \times 10 = 5$$

In \triangle ACB, seg CM is the median,

.. by Appollonius theorem,

$$AC^2 + BC^2 = 2CM^2 + 2AM^2$$

$$\therefore 7^2 + 9^2 = 2CM^2 + 2(5)^2$$

$$\therefore$$
 49 + 81 = 2CM² + 50

$$130 - 50 = 2$$
CM²

$$\therefore \mathbf{CM}^2 = \frac{80}{2}$$

$$\therefore$$
 CM² = 40

$$\therefore$$
 CM = $2\sqrt{10}$

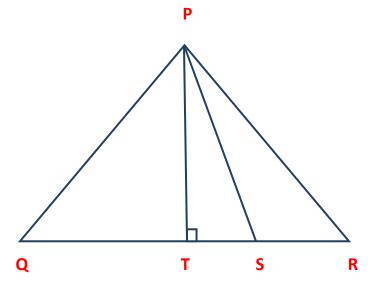
Ans.: Length of the median drawn from point C to AB is $2\sqrt{10}$

Q. 18

In the figure seg PS is the median of \triangle PQR and PT $^{\perp}$ QR. Prove that:

(1)
$$PR^2 = PS^2 + QR \times ST + \left(\frac{QR}{2}\right)^2$$

(2)
$$\mathbf{PQ}^2 = \mathbf{PS}^2 - \mathbf{QR} \times \mathbf{ST} + \left(\frac{\mathbf{QR}}{2}\right)^2$$



SOLUTION:

Seg PS is the median of \triangle PQR ... (Given)

∴ QS = SR = $\frac{1}{2}$ QR (S is the midpoint of side QR) .. (1)

In \triangle PTS, \angle PTS = 90° ... (Given)

.. by Pythagoras theorem,

$$\mathbf{PS}^2 = \mathbf{PT}^2 + \mathbf{TS}^2 \qquad \dots (2)$$

(1) In \triangle PTR, \angle PTR is 90° ... (Given)

.. by Pythagoras theorem,

$$\mathbf{PR}^2 = \mathbf{PT}^2 + \mathbf{TR}^2$$

:.
$$PR^2 = PT^2 + (TS^2 + SR^2)$$
 ... $(T - S - R)$

:.
$$PR^2 = PT^2 + TS^2 + 2ST.SR + SR^2$$
 ... $[(a + b)^2 = a^2 + 2ab + b^2)]$

:.
$$PR^2 = (PT^2 + TS^2) + 2ST.SR + SR^2$$

.:
$$PR^2 = PS^2 + 2ST. \left(\frac{QR}{2}\right) + \left(\frac{QR}{2}\right)^2$$
 ... [From (1) & (2)]

$$\therefore \mathbf{PR}^2 = \mathbf{PS}^2 + \mathbf{QR} \times \mathbf{ST} + \left(\frac{\mathbf{QR}}{2}\right)^2$$

(2) In \triangle PTQ, \angle PTQ is 90° ... (Given)

∴ by Pythagoras theorem,

$$\mathbf{PQ}^2 = \mathbf{PT}^2 + \mathbf{TQ}^2$$

:.
$$PQ^2 = PT^2 + (QS^2 - TS^2)$$
 ... $(Q - T - S)$

:.
$$PQ^2 = PT^2 + QS^2 - 2QS.TS + TS^2$$
 ... $[(a - b)^2 =$

$$a^2 - 2ab + b^2)]$$

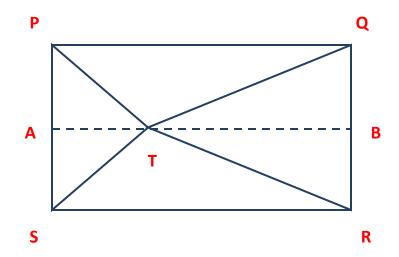
:.
$$PQ^2 = (PT^2 + TS^2) - 2QS.TS + QS^2$$

:.
$$PQ^2 = PS^2 - 2TS. \left(\frac{QR}{2}\right) + \left(\frac{QR}{2}\right)^2$$
 ... [From (1) & (2)]

$$\therefore \mathbf{PQ}^2 = \mathbf{PS}^2 - \mathbf{QR} \times \mathbf{ST} + \left(\frac{\mathbf{QR}}{2}\right)^2$$

Q. 19

In figure, point T is in the interior of rectangle PQRS. Prove that, $TS^2 + TQ^2 = TP^2 + TR^2$



SOLUTION:

Seg PS | **seg QR** ... (**Opposite sides of rectangle**)

∴ seg AS \parallel seg BR ... (P – A – S and Q – B – R) also seg AB \parallel seg SR ... (Construction)

∴ □ ASRB is a parallelogram ... (by definition)

 \angle S = 90° ... (Angle of rectangle PSRQ)

∴ □ ASRB is a rectangle ... (A parallelogram is a rectangle, if one of its angles is a right angle)

$$\angle$$
 SAB = \angle ABR = 90° ... (Angles of a rectangle)

∴ seg TA
$$\perp$$
 side PS and seg TB \perp side QR ... (1)

$$AS = BR \dots (Opp. sides of rectangle are equal \dots (2)$$

Similarly, we can prove
$$AP = BQ$$
 ... (3)

In
$$\triangle$$
 TAS, \angle TAS = 90° ... [From (1)]

.. by Pythagoras theorem,

$$TS^2 = TA^2 + AS^2 \qquad \dots (4)$$

In
$$\triangle$$
 TBQ, \angle TBQ = 90°

.. by Pythagoras theorem,

$$TQ^2 = TB^2 + BQ^2 \qquad \dots (5)$$

Adding (4) and (5) we get,

$$TS^2 + TQ^2 = TA^2 + AS^2 + TB^2 + BQ^2$$
 ... (6)

In
$$\triangle$$
 TAP, \angle TAP = 90°

.. by Pythagoras theorem,

$$TP^2 = TA^2 + AP^2 \qquad \dots (7)$$

In \triangle TBR, \angle TBR = 90°

.. by Pythagoras theorem,

$$TR^2 = TB^2 + BR^2 \qquad \dots (8)$$

Adding (7) and (8) we get,

$$TP^2 + TR^2 = TA^2 + AP^2 + TB^2 + BR^2$$
 ... (6)

:.
$$TP^2 + TR^2 = TA^2 + BQ^2 + TB^2 + AS^2$$
 ... [From (2) and (3)] (9)

∴ From (6) and (9) we get,

$$TS^2 + TQ^2 = TP^2 + TR^2$$

Q. 20

Do sides 7 cm, 24 cm, 25 cm form a right angled triangle? Give reason.

SOLUTION:

$$7^2 = 49, 24^2 = 576, 25^2 = 625$$

$$7^2 + 24^2 = 49 + 576 = 625$$

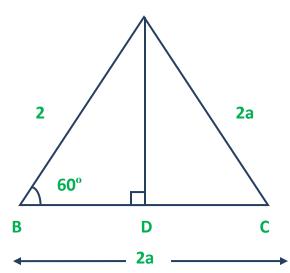
$$\therefore 7^2 + 24^2 = 25^2$$

∴ By converse Pythagoras theorem, 7 cm, 24 cm, 25 cm form a right angled triangle.

Q. 21

Find the height of an equilateral triangle having side 2a.

SOLUTION:



Let the given equilateral triangle be ABC and seg AD be the height.

 \angle B = 60° ... (Angle of an equilateral triangle) ... (1) In \triangle ADB,

 \angle ABD + \angle BAD + \angle ADB = 180° .. (Sum of all angles of a triangle is 180°)

∴
$$60 + \angle BAD + 90 = 180^{\circ}$$
 ... [From given and (1)]

$$\therefore \angle BAD + 150 = 180^{\circ}$$

$$\therefore \angle BAD = 180^{\circ} - 150^{\circ}$$

$$\therefore \angle BAD = 30^{\circ}$$

$$\therefore$$
 \triangle ADB is a 30° - 60° - 90° triangle

$$\therefore$$
 By 30° - 60° - 90° triangle theorem,

$$AD = \frac{\sqrt{3}}{2} \times AB$$
 ... (Side opposite to 60°)

$$\therefore \mathbf{AD} = \frac{\sqrt{3}}{2} \times 2\mathbf{a}$$

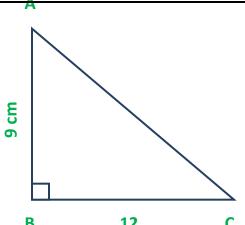
$$\therefore$$
 AD = $\sqrt{3}a$

Ans.: Height of an equilateral triangle is $\sqrt{3}a$

Q. 22

Find the length of the hypotenuse of a right angled triangle if remaining sides are 9 cm and 12 cm.

SOLUTION:



Let \triangle ABC be given right angled triangle

$$\angle$$
 B = 90°, AB = 9 cm and BC = 12 cm

In
$$\triangle$$
 ABC, \angle ABC = 90°

.. By Pythagoras theorem,

$$AC^2 = AB^2 + BC^2$$

$$AC^2 = 9^2 + 12^2$$

$$\therefore AC^2 = 81 + 144$$

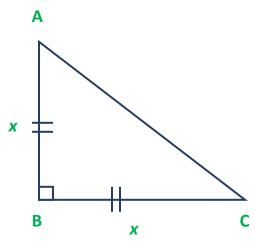
$$\therefore AC^2 = 225$$

Ans.: Length of hypotenuse of right angled triangle is 15 cm.

Q. 23

Side of an isosceles right angled triangle is x. Find its hypotenuse.

SOLUTION:



Let \triangle ABC be given isosceles right angled triangle

$$AB = BC = x$$
, $\angle B = 90^{\circ}$

In \triangle ABC, \angle ABC = 90° ... (Given)

:. By Pythagoras theorem,

$$AC^2 = AB^2 + BC^2$$

$$\therefore \mathbf{AC}^2 = x^2 + x^2$$

$$\therefore \mathbf{AC}^2 = 2x^2$$

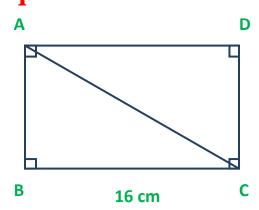
$$\therefore AC = \sqrt{2}x$$

Ans.: Length of hypotenuse AC is $\sqrt{2}x$

Q. 24

Find the diagonal of a rectangle whose length is 16 cm and area is 192 sq. cm

SOLUTION:



Let \square ABCD be the given rectangle.

BC = 16 cm and A (\square ABCD) = 192 sq. cm

Area of a rectangle = length x breadth

$$\therefore$$
 A (\square ABCD) = AB x BC

$$\therefore 192 = AB \times 16$$

$$\therefore \mathbf{AB} = \frac{192}{16}$$

$$\therefore$$
 AB = 12 cm

In \triangle ABC \angle ABC = 90° ... (Angle of a rectangle)

.. By Pythagoras theorem,

$$AC^2 = AB^2 + BC^2$$

$$\therefore AC^2 = 12^2 + 16^2$$

$$AC^2 = 144 + 256$$

$$\therefore AC^2 = 400$$

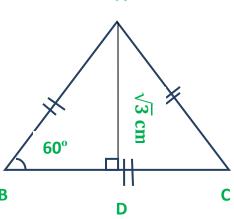
$$\therefore$$
 AC = 20 cm

Ans.: Diagonal of the rectangle is 20 cm.

Q. 25

Find the length of the side and perimeter of an equilateral triangle whose height is $\sqrt{3}$ cm.

SOLUTION:



Let Δ ABC be given equilateral triangle and seg AD be its height.

$$AD = \sqrt{3} cm$$

 \angle B = 60° ... (Angle of an equilateral triangle) ... (1) In \triangle ADB,

 \angle ADB + \angle ABD + \angle BAD = 180° ... (Sum of all angles of a triangle is 180°)

$$\therefore 90^{\circ} + 60^{\circ} + \angle BAD = 180^{\circ}$$

$$\therefore 150 + \angle BAD = 180^{\circ}$$

$$\therefore \angle BAD = 30^{\circ}$$

 \therefore \triangle ADB is a 30° - 60° - 90° triangle

 \therefore By 30° - 60° - 90° triangle theorem,

$$AD = \frac{\sqrt{3}}{2} AB$$
 ... (Side opposite to 60°)

$$\therefore \sqrt{3} = \frac{\sqrt{3}}{2} \mathbf{AB}$$

$$\therefore \mathbf{AB} = \frac{2 \times \sqrt{3}}{\sqrt{3}}$$

$$\therefore$$
 AB = 2 cm

∴ Side of an equilateral triangle is 2 cm

Perimeter of \triangle ABC = 3 x side

 $= 3 \times AB$

 $=3 \times 2$

= 6 cm

Perimeter of equilateral triangle is 6 cm.

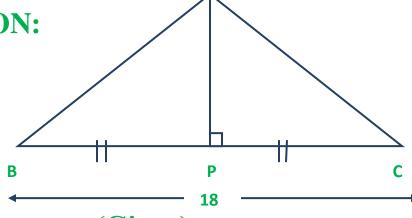
Ans.: Side of an equilateral triangle is 2 cm and its perimeter is 6 cm.

Q. 26

In \triangle ABC, seg AP is a median. If BC = 18, AB² + AC²

= 260, find AP.

SOLUTION:



BP =
$$\frac{1}{2}$$
 BC (P is the midpoint of seg BC)

$$\therefore BP = \frac{1}{2} \times 18$$

$$\therefore BP = 9$$

In \triangle ABC, seg AP is the median ... (Given)

:. By Appollonius theorem,

$$AB^2 + AC^2 = 2AP^2 + 2BP^2$$

$$\therefore 260 = 2AP^2 + 2(9)^2$$

$$\therefore 260 = 2AP^2 + 162$$

$$\therefore 2AP^2 = 260 - 162$$

$$\therefore 2AP^2 = 98$$

$$\therefore \mathbf{AP}^2 = \frac{98}{2}$$

$$\therefore AP^2 = 49$$

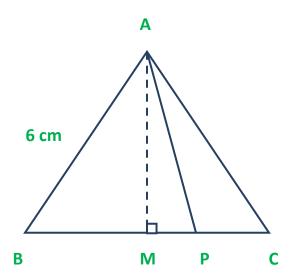
$$\therefore AP = 7$$

Q. 27

 Δ ABC is an equilateral triangle. Point P is on base BC such that PC = $\frac{1}{3}$ BC. If AB = 6 cm, find AP.

SOLUTION:

Draw seg AM \perp side BC such that B – M – C



 Δ ABC is an equilateral triangle.

∴ AB = BC = AC = 6 cm ... (Sides of an equilateral triangle) ... (1)

 \angle C = 60° ... (Angle of an equilateral triangle) ... (2) In \triangle AMC,

 \angle AMC + \angle ACM + \angle MAC = 180° ... (Sum of all angles of a triangle is 180°)

$$\therefore 90^{\circ} + 60^{\circ} + \angle MAC = 180^{\circ} \dots [From (1) and (2)]$$

$$\therefore$$
 150 + \angle MAC = 180°

$$\therefore \angle MAC = 180^{\circ} - 150^{\circ}$$

$$\therefore \angle MAC = 30^{\circ}$$

∴
$$\triangle$$
 AMC is a 30° - 60° - 90° triangle

$$\therefore$$
 By 30° - 60° - 90° triangle theorem,

$$AM = \frac{\sqrt{3}}{2} AC \qquad ... \text{ (Side opposite to } 60^{\circ}\text{)}$$

$$\therefore \mathbf{AM} = \frac{\sqrt{3}}{2} \times \mathbf{6}$$

$$\therefore$$
 AM = $3\sqrt{3}$ cm

$$MC = \frac{1}{2}BC$$
 ... (Side opposite to 30°)

:.
$$MC = \frac{1}{2} \times 6$$
 ... [From (1)]

$$\therefore$$
 MC = 3 cm

$$PC = \frac{1}{3}BC$$
 ... (Given)

:. PC =
$$\frac{1}{3}$$
 x 6 ... [From (1)]

$$MP + PC = MC \quad (M - P - C)$$

$$\therefore MP + 2 = 3$$

$$\therefore$$
 MP = 3 – 2

$$\therefore$$
 MP = 1 cm

In
$$\triangle$$
 AMP, \angle AMP = 90°

... (Construction)

:. By Pythagoras theorem,

$$AP^2 = AM^2 + MP^2$$

$$\therefore \mathbf{AP}^2 = \left(3\sqrt{3}\right)^2 + 1^2$$

$$\therefore AP^2 = 27 + 1$$

$$\therefore AP^2 = 28$$

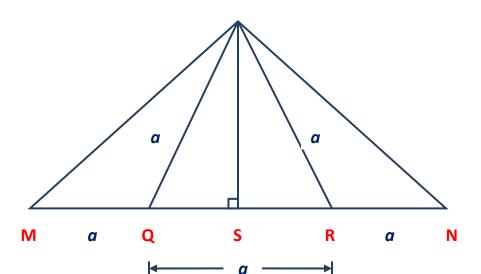
$$\therefore AP^2 = 4 \times 7$$

$$\therefore$$
 AP = $2\sqrt{7}$ cm

Q. 28

From the information given in the figure prove that

$$PM = PN = \sqrt{3}a$$



Proof:

$$PQ = PR = QR = QM = RN = a ... (Given) ... (1)$$

Consider \triangle PMR,

$$QM = QR \qquad ... [From (1)]$$

- ∴ seg PQ is the median
- .. By Appollonius theorem,

$$PM^2 + PR^2 = 2PQ^2 + 2QM^2$$

:.
$$PM^2 + a^2 = 2a^2 + 2a^2$$
 ... [From (1)]

$$\therefore \mathbf{PM}^2 = 4\mathbf{a}^2 - \mathbf{a}^2$$

$$\therefore \mathbf{PM}^2 = 3\mathbf{a}^2$$

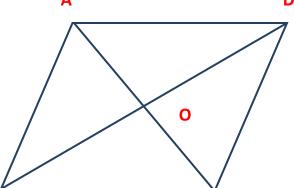
$$\therefore PM^2 = \sqrt{3} a$$

Similarly, we can prove PN = $\sqrt{3}$ a

$$\therefore$$
 PM = PN = $\sqrt{3}$ a

Q. 29

Prove that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.



Given:

- (i) \square ABCD i ^B \mid parallelograr ^C
- (ii) Diagonals AC and BD intersect at O

To Prove:
$$AC^2 + BD^2 = AB^2 + BC^2 + CD^2 + AD^2$$

Proof:

- ☐ ABCD is a parallelogram ... (Given)
- \therefore CD = AB ... (1) and

 $AD = BC \dots (2)$ (Opposite sides of a parallelogram are equal)

Also,
$$AO = OC = \frac{1}{2} AC ... (3)$$

$$BO = OD = \frac{1}{2} BD \dots (4)$$
 (Diagonals of

parallelogram bisect each other)

In \triangle ABC, seg BO is the median ... (By definition)

.. By Appollonius theorem,

$$AB^2 + BC^2 = 2BO^2 + 2OC^2$$

..
$$AB^2 + BC^2 = 2\left(\frac{1}{2}BD\right)^2 + 2\left(\frac{1}{2}AC\right)^2$$
 ... [From (3) and (4)]

:.
$$AB^2 + BC^2 = 2 \times \frac{1}{4} BD^2 + 2 \times \frac{1}{4} AC^2$$

∴
$$AB^2 + BC^2 = \frac{1}{2}BD^2 + \frac{1}{2}AC^2$$

Multiplying each term by 2 we get,

$$2AB^2 + 2BC^2 = BD^2 + AC^2$$

$$\therefore \mathbf{AB}^2 + \mathbf{AB}^2 + \mathbf{BC}^2 + \mathbf{BC}^2 = \mathbf{BD}^2 + \mathbf{AC}^2$$

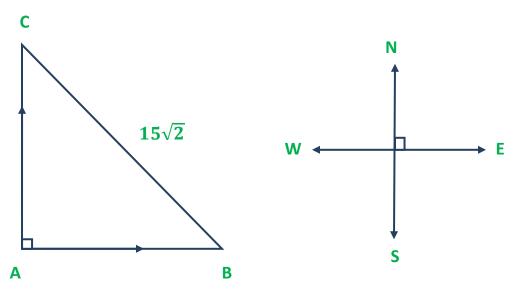
:.
$$AB^2 + CD^2 + BC^2 + AD^2 = BD^2 + AC^2$$
 ... [From (1) and (2)]

..
$$AB^2 + BC^2 + CD^2 + AO^2 = BD^2 + AC^2 OR$$

 $AC^2 + BD^2 = AB^2 + BC^2 + CD^2 + AD^2$
Q. 30

Pranali and Prasad started walking to the East and to the North respectively, from the same point and at the same speed. After two hours, distance between them was $15\sqrt{2}$ km. Find their speed per hour.

SOLUTION:



In the figure, Point A represents the point from where Pranali and Prasad start walking. Seg AB represents the path of Pranali and seg AC represents the path of Prasad.

After 2 hours, Pranali reaches point B and Prasad reaches point C.

$$BC = 15\sqrt{2} \text{ km}$$

Pranali and Prasad are walking at the same speed.

Let the speed be x km/hr.

We know, distance covered = speed x time

$$\therefore$$
 distance AB = $x \times 2$

$$\therefore AB = 2x$$

also distance $AC = x \times 2$

$$\therefore$$
 AC = 2x km

In right angled \triangle CAB, by Pythagoras theorem,

$$BC^2 = AC^2 + AB^2$$

$$\therefore (15\sqrt{2})^2 = (2x)^2 + (2x)^2$$

$$\therefore$$
 225 x 2 = 4 x^2 + 4 x^2

$$\therefore 8x^2 = 225 \times 2$$

$$\therefore x^2 = \frac{225 \times 2}{8}$$

$$\therefore x^2 = \frac{225}{4}$$

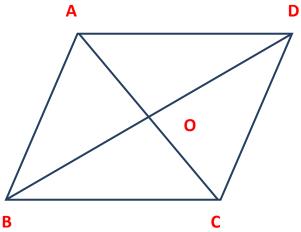
$$\therefore x = \frac{15}{2}$$

$$\therefore x = 7.5$$

Ans.: The required speed is 7.5 km/hr.

Q. 31

Sum of the squares of adjacent sides of a parallelogram is 130 sq. cm. and length of one of its diagonals is 14 cm. Find the length of the other diagonal.



SOLUTION:

Let \square ABCD be the given parallelogram. Let diagonals AC and BD intersect at point O.

 $AB^2 + BC^2 = 130 \text{ sq. cm}$ and AC = 14 cm

 $AO = \frac{1}{2} AC \dots$ (Diagonals of parallelogram bisect each other)

$$\therefore AO = \frac{1}{2} \times 14$$

In \triangle ABC, seg BO is the median ... (By definition)

.. By Appollonius theorem,

$$AB^2 + BC^2 = 2BO^2 + 2AO^2$$

$$\therefore 130 = 2BO^2 + 2(7)^2$$

$$\therefore 130 = 2BO^2 + 2 \times 49$$

$$\therefore 130 = 2BO^2 + 98$$

$$\therefore 2BO^2 = 130 - 98$$

$$\therefore 2BO^2 = 32$$

$$\therefore \mathbf{BO}^2 = \frac{32}{2}$$

∴
$$BO^2 = 16$$

$$\therefore$$
 BO = 4 cm

BO = $\frac{1}{2}$ BD ... (Diagonals of parallelogram bisect each other)

$$\therefore 4 = \frac{1}{2} BD$$

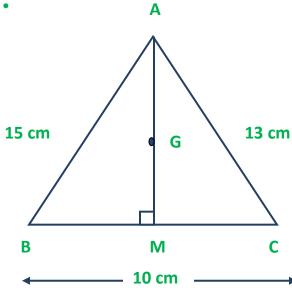
$$\therefore BD = 8 cm$$

Ans.: Length of other diagonal of parallelogram is 8 cm.

Q. 32

In an isosceles triangle, length of the congruent sides is 13 cm and its base is 10 cm. Find the distance between the vertex opposite the base and the centroid.

SOLUTION:



Let \triangle ABC be the given isosceles triangle.

$$AB = AC = 13 \text{ cm}, BC = 10 \text{ cm}$$

Draw seg AM \perp side BC such that B – M – C

In \triangle AMB and \triangle AMC,

$$\angle$$
 AMB = \angle AMC = 90° ... (Construction)

Hypotenuse $AB \cong hypotenuse AC \dots (Given)$

Side $AM \cong side AM \dots$ (Common side)

$$\therefore \triangle AMB \cong \triangle AMC \dots$$
 (By hypotenuse side theorem)

 \therefore seg BM \cong seg CM ... (Congruent side of a congruent triangle) ... (1)

$$\therefore \mathbf{BM} = \mathbf{CM} = \frac{1}{2} \mathbf{BC}$$

$$\therefore \mathbf{BM} = \mathbf{CM} = \frac{1}{2} \times \mathbf{10}$$

$$\therefore$$
 BM = CM = 5 cm

In \triangle AMB, \angle AMB = 90° ... (Construction)

:. By Pythagoras theorem,

$$AB^2 = AM^2 + BM^2$$

$$13^2 = AM^2 + 5^2$$

$$AM^2 = 13^2 - 5^2$$

$$AM^2 = 169 - 25$$

$$\therefore AM^2 = 144$$

Now,
$$BM = MC \dots [From (1)]$$

- ∴ seg AM is also the median ... (By definition)
- : centroid G lies on it

By centroid property of triangle,

$$\mathbf{AG} = \frac{2}{3} \mathbf{AM}$$

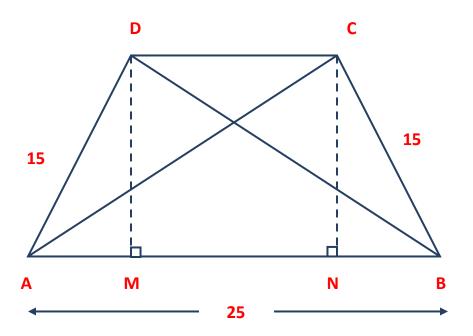
$$\therefore AG = \frac{2}{3} \times 12$$

$$\therefore$$
 AG = 8 cm

Ans.: The distance between the vertex opposite the base and the centroid is 8 cm.

Q. 33

In a trapezium ABCD, seg AB \parallel seg DC, seg BD \perp seg AD, seg AC \perp seg BC, if AD = 15, BC = 15 and AB = 25. Find A (\square ABCD).



SOLUTION:

In \triangle ADB, \angle ADB is 90° ... (Given)

.. By Pythagoras theorem,

$$AB^2 = AD^2 + BD^2$$

$$\therefore 25^2 = 15^2 + BD^2$$

:.
$$BD^2 = 252 - 152$$

$$\therefore BD^2 = 625 - 225$$

$$\therefore \mathbf{BD}^2 = 400$$

$$\therefore BD = 20$$

Similarly, AC = 20

Draw seg DM \perp side AB such that A - M - B and seg $CN \perp$ side AB such that A - N - B

$$A (\Delta ADB) = \frac{1}{2} \times BD \times AD$$

$$\therefore \mathbf{A} (\Delta \mathbf{ADB}) = \frac{1}{2} \times 20 \times 15$$

$$\therefore$$
 A (\triangle ADB) = 150 sq units

also, A (
$$\triangle$$
 ADB) = $\frac{1}{2}$ x AB x DM

$$\therefore \mathbf{A} (\Delta \mathbf{ADB}) = \frac{1}{2} \times 25 \times \mathbf{DM}$$

$$\therefore 150 = \frac{1}{2} \times 25 \times DM$$

$$\therefore \mathbf{DM} = \frac{150 \times 2}{25}$$

Similarly, CN = 12

In \triangle DMA, \angle DMA = 90° ... (Construction)

.. By Pythagoras theorem,

$$AD^2 = DM^2 + AM^2$$

$$15^2 = 12^2 + AM^2$$

$$AM^2 = 225 - 144$$

$$\therefore \mathbf{AM}^2 = \mathbf{81}$$

$$\therefore AM = 9$$

Similarly BN = 9

$$AM + MN + NB = AB (A - M - N and M - N - B)$$

$$\therefore$$
 9 + MN + 9 = 25

$$\therefore 18 + MN = 25$$

$$\therefore$$
 MN = 25 – 18

$$\therefore$$
 MN = 7

In \square DCNM, seg DC \parallel seg MN ... (seg DC \parallel seg AB and A-M-N-B)

seg DM | seg CN ... (Perpendiculars to same line are parallel)

- ∴ □ DCNM is a parallelogram ... (By definition)
- \therefore DC = MN = 7 ... (Opposite sides of a parallelogram are equal)

Area of a trapezium = $\frac{1}{2}$ x sum of parallel sides x height

$$\therefore$$
 A (\square ABCD) = $\frac{1}{2}$ x (AB + CD) x DM

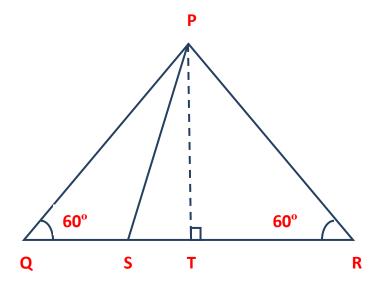
$$\therefore \mathbf{A} (\Box \mathbf{ABCD}) = \frac{1}{2} \mathbf{x} (25 + 7) \mathbf{x} 12$$

$$\therefore$$
 A (\square ABCD) = 32 x 6

$$\therefore$$
 A (\square ABCD) = 192 sq units

Q. 34

In the figure, \triangle PQR is an equilateral triangle. Point S is on seg QR such that QS = $\frac{1}{3}$ QR. Prove that 9PS² = 7PQ².



Proof:

Draw seg PT \perp side QR such that Q – T – R

Δ PQR is an equilateral triangle

 \therefore PQ = QR = PR ... (Sides of an equilateral triangle are equal) ... (1)

 \angle Q = 60° ... (Angle of an equilateral triangle) ... (2) In \triangle PQT,

 \angle PTQ + \angle PQT + \angle QPT = 180° ... (Sum of all angles of a triangle is 180°)

∴ $90^{\circ} + 60^{\circ} + \angle QPT = 180^{\circ}$... [From construction and (1)]

∴
$$150 + \angle QPT = 180^{\circ}$$

$$\therefore \angle QPT = 180^{\circ} - 150^{\circ}$$

$$\therefore \angle QPT = 30^{\circ}$$

$$\therefore$$
 \triangle PQT is a 30° - 60° - 90° triangle

$$\therefore$$
 by 30° - 60° - 90° triangle theorem,

$$PT = \frac{\sqrt{3}}{2} PQ \dots (Side opposite to 60^{\circ})$$

$$QT = \frac{1}{2} PQ \dots (Side opposite to 30^{\circ})$$

$$QS + ST = QT \dots (Q - S - T)$$

$$\therefore \frac{1}{3} \mathbf{Q} \mathbf{R} + \mathbf{S} \mathbf{T} = \frac{1}{2} \mathbf{P} \mathbf{Q}$$

$$\therefore \frac{1}{3} PQ + ST = \frac{1}{2} PQ \dots [From (1)]$$

$$\therefore \mathbf{ST} = \frac{1}{2} \mathbf{PQ} - \frac{1}{3} \mathbf{PQ}$$

$$\therefore \mathbf{ST} = \frac{3PQ - 2PQ}{6}$$

$$\therefore$$
 ST = $\frac{PQ}{6}$

In
$$\triangle$$
 PTS, \angle PTS = 90° ... (Construction)

.. By Pythagoras theorem,

$$\mathbf{PS}^2 = \mathbf{PT}^2 + \mathbf{ST}^2$$

$$\therefore \mathbf{PS}^2 = \left(\frac{\sqrt{3}}{2}\mathbf{PQ}\right)^2 + \left(\frac{\mathbf{PQ}}{6}\right)^2$$

:
$$PS^2 = \frac{3PQ^2}{4} + \frac{PQ^2}{36}$$

$$\therefore \mathbf{PS}^2 = \frac{27PQ^2 + PQ^2}{36}$$

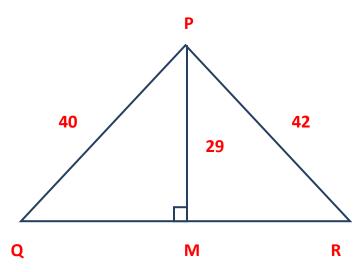
$$\therefore \mathbf{PS}^2 = \frac{28PQ^2}{36}$$

$$\therefore \mathbf{PS}^2 = \frac{7\mathbf{PQ}^2}{9}$$

$$\therefore 9PS^2 = 7PQ^2$$

Q. 35

Seg PM is a median of \triangle PQR. If PQ = 40, PR = 42 and PM = 29, find QR.



SOLUTION:

In \triangle PQR, seg PM is the median ... (Given)

.. by Appollonius theorem,

$$\mathbf{PQ}^2 + \mathbf{PR}^2 = 2\mathbf{PM}^2 + 2\mathbf{QM}^2$$

$$\therefore 40^2 + 42^2 = 2 (29)^2 + 2QM^2$$

$$\therefore 1600 + 1764 = 2 \times 841 + 2QM^2$$

$$\therefore 3364 = 1682 + 2QM^2$$

$$\therefore 2QM^2 = 3362 - 1682$$

$$\therefore 2QM^2 = 1682$$

$$\therefore \mathbf{QM}^2 = \frac{1682}{2}$$

$$\therefore \mathbf{QM}^2 = 841$$

$$\therefore \mathbf{QM} = \mathbf{29}$$

 $QM = \frac{1}{2} QR \dots (M \text{ is the midpoint of seg } QR)$

$$\therefore 29 = \frac{1}{2} QR$$

$$\therefore$$
 QR = 29 x 2

$$\therefore$$
 QR = 58

Q. 36

See adjoining figure. Find RP and PS using the information given in ΔPSR .



Solution:

In
$$\triangle PSR$$
, $\angle S = 90^{\circ}$, $\angle P = 30^{\circ}$ [Given]

∴
$$\angle$$
R = 60° [Remaining angle of a triangle]

∴
$$\triangle$$
PSR is a 30° – 60° – 90° triangle.

$$RS = \frac{1}{2} RP \dots [Side opposite to 30^{\circ}]$$

$$\therefore 6 = \frac{1}{2} \mathbf{RP}$$

$$\therefore$$
 RP = $6 \times 2 = 12$ units

Also, PS = $\frac{\sqrt{3}}{2}$ RP ... [Side opposite to 60°]

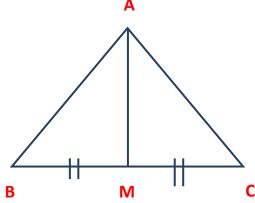
$$=\frac{\sqrt{3}}{2}\times 12$$

 $=6\sqrt{3}$ units

 \therefore RP = 12 units, PS = $6\sqrt{3}$ units

Q. 37

In $\triangle ABC$, point M is the midpoint of side BC. If AB2 + AC2 = 290 cm, AM = 8 cm, find BC.



SOLUTION:

In $\triangle ABC$, point M is the midpoint of side BC. [Given]

- **∴** seg AM is the median.
- $AB^2 + AC^2 = 2 AM^2 + 2 MC^2$ [Apollonius theorem]

$$\therefore$$
 290 = 2 (8)² + 2 MC²

$$\therefore$$
 145 = 64 + MC² ... [Dividing both sides by 2]

$$MC^2 = 145 - 64$$

$$\therefore MC^2 = 81$$

$$\therefore$$
 MC = $\sqrt{81}$... [Taking square root of both sides]

$$MC = 9 cm$$

Now, $BC = 2 MC \dots [M \text{ is the midpoint of } BC]$

$$=2\times9$$

$$\therefore$$
 BC = 18 cm

Q. 38

In $\triangle ABC$, $\angle C$ is an acute angle, seg $AD \perp SEG BC$.

Prove that: $AB^2 = BC^2 + A^2 - 2 BC \times DC$.

Given: $\angle C$ is an acute angle, seg AD \bot seg BC.

To prove: $AB^2 = BC^2 + AC^2 - 2BC \times DC$

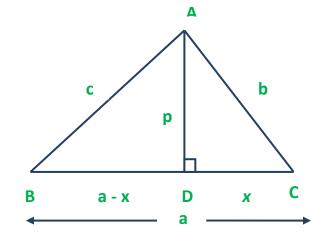
SOLUTION:

Proof:

$$\therefore$$
 Let AB = c, AC = b, AD = p

$$BC = a, DC = x$$

$$BD + DC = BC \dots [B - D - C]$$



$$\therefore \mathbf{BD} = \mathbf{BC} - \mathbf{DC}$$

$$:: \mathbf{BD} = \mathbf{a} - \mathbf{x}$$

In $\triangle ABD$, $\angle D = 90^{\circ}$... [Given]

 $AB^2 = BD^2 + AD^2$... [Pythagoras theorem]

:
$$c^2 = (a - x)^2 + [P^2]$$
 ... (i)

$$c^2 = a^2 - 2ax + x^2 + [P^2]$$

In $\triangle ADC$, $\angle D = 90^{\circ}$... [Given]

 $AC^2 = AD^2 + CD^2$... [Pythagoras theorem]

$$\mathbf{b}^2 = \mathbf{p}^2 + [\mathbf{X}^2]$$

$$\therefore \mathbf{p}^2 = \mathbf{b}^2 - [\mathbf{X}^2] (\mathbf{ii})$$

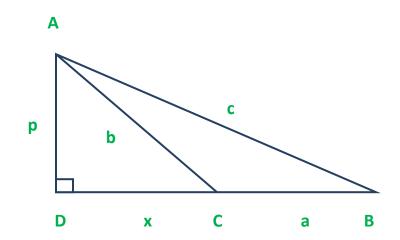
$$\therefore c^2 = a^2 - 2ax + x^2 + b^2 - x^2 \dots [Substituting (ii) in (i)]$$

$$\therefore \mathbf{c}^2 = \mathbf{a}^2 + \mathbf{b}^2 - 2\mathbf{a}\mathbf{x}$$

$$AB^2 = BC^2 + AC^2 - 2 BC \times DC$$

Q. 39

In $\triangle ABC$, $\angle ACB$ is an obtuse angle, seg AD \bot seg BC. Prove that: $AB^2 = BC^2 + AC^2 + 2$ BC \times CD. Given: $\angle ACB$ is an obtuse angle, seg AD \bot seg BC. To prove: $AB^2 = BC^2 + AC^2 + 2BC \times CD$ SOLUTION:



Let
$$AD = p$$
, $AC = b$, $AB = c$,

$$BC = a, DC = x$$

$$BD = BC + DC \dots [B - C - D]$$

$$BD = a + x$$

In $\triangle ADB$, $\angle D = 90^{\circ}$... [Given]

$$AB^2 = BD^2 + AD^2$$
 ... [Pythagoras theorem]

∴
$$c^2 = (a + x)^2 + p^2$$
 ... (i)

$$\cdot c^2 = a^2 + 2ax + x^2 + p^2$$

Also, in $\triangle ADC$, $\angle D = 90^{\circ}$... [Given]

 $AC^2 = CD^2 + AD^2 \dots [Pythagoras theorem]$

$$\mathbf{b}^2 = \mathbf{x}^2 + \mathbf{p}^2$$

$$\therefore \mathbf{p}^2 = \mathbf{b}^2 - \mathbf{x}^2 \dots (\mathbf{ii})$$

$$\therefore c^2 = a^2 + 2ax + x^2 + b^2 - x^2 \dots [Substituting (ii) in (i)]$$

$$\therefore \mathbf{c}^2 = \mathbf{a}^2 + \mathbf{b}^2 + 2\mathbf{a}\mathbf{x}$$

$$\therefore AB^2 = BC^2 + AC^2 + 2BC \times CD$$

Q. 40

Do sides 7 cm, 24 cm, 25 cm form a right angled triangle? Give reason.

SOLUTION:

The sides of the triangle are 7 cm, 24 cm and 25 cm.

The longest side of the triangle is 25 cm.

$$\therefore$$
 $(25)^2 = 625$

Now, sum of the squares of the remaining sides is,

$$(7)^2 + (24)^2 = 49 + 576 = 625$$

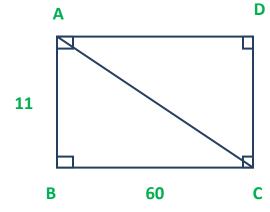
$$\therefore (25)^2 = (7)^2 + (24)^2$$

- ∴ Square of the longest side is equal to the sum of the squares of the remaining two sides.
- ∴ The given sides will form a right angled triangle[Converse of Pythagoras theorem]

Q. 41

Find the length of a diagonal of a rectangle having sides 11 cm and 60 cm.

SOLUTION:



Let \Box ABCD be the given rectangle.

$$AB = 11 \text{ cm}, BC = 60 \text{ cm}$$

In $\triangle ABC$, $\angle B = 90^{\circ}$... [Angle of a rectangle]

$$AC^2 = AB^2 + BC^2$$
 ... [Pythagoras theorem]

$$AC^2 = 112 + 602$$

$$AC^2 = 121 + 3600$$

$$AC^2 = 3721$$

∴ AC =
$$\sqrt{3721}$$
 ... [Taking square root of both sides]

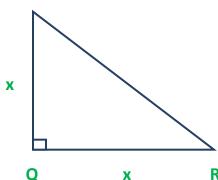
$$\therefore$$
 AC = 61 cm

∴ The length of the diagonal of the rectangle is 61 cm.

Q. 42

A side of an isosceles right angled triangle is x. Find its hypotenuse.

SOLUTION:



Let \triangle PQR be the given right angled isosceles triangle.

$$PQ = QR = x$$

In $\triangle PQR$, $\angle Q = 90^{\circ}$... [Pythagoras theorem]

$$\therefore PR^2 = PQ^2 + QR^2$$

$$\therefore \mathbf{PR}^2 = \mathbf{x}^2 + \mathbf{x}^2$$

$$\therefore PR^2 = 2x^2$$

- \therefore PR = $\sqrt{2x^2}$... [Taking square root of both sides]
- \therefore PR = $x\sqrt{2}$ units
- : The hypotenuse of the right angled isosceles triangle is $x\sqrt{2}$ units.

Q. 43

In $\triangle PQR$, $PQ = \sqrt{8}$, $QR = \sqrt{5}$, $PR = \sqrt{3}$. Is $\triangle PQR$ a right angled triangle? If yes, which angle is of 90°? SOLUTION:

Longest side of \triangle PQR = PQ = $\sqrt{8}$

$$PQ^2 = \left(\sqrt{8}\right)^2 = 8$$

Now, sum of the squares of the remaining sides is,

$$\mathbf{QR}^2 + \mathbf{PR}^2 = \left(\sqrt{5}\right)^2 + \left(\sqrt{3}\right)^2$$

$$\therefore \mathbf{QR}^2 + \mathbf{PR}^2 = 5 + 3$$

$$\therefore \mathbf{QR}^2 + \mathbf{PR}^2 = \mathbf{8}$$

$$PQ^2 = QR^2 + PR^2$$

- : Square of the longest side is equal to the sum of the squares of the remaining two sides.
- \therefore \triangle PQR is a right angled triangle. [Converse of Pythagoras theorem]

Now, PQ is the hypotenuse.

- \therefore **PRQ** = 90° [Angle opposite to hypotenuse]
- ∴ \triangle PQR is a right angled triangle in which \angle PRQ is of 90°

O. 44

In $\triangle ABC$, seg AD \perp seg BC and DB = 3 CD. Prove

that: 2 AB2 = 2 AC2 + BC2

Given: seg AD \perp seg BC and DB = 3CD

To prove: $2AB^2 = 2AC^2 + BC^2$

SOLUTION:

$$DB = 3CD \dots (i) \dots [Given]$$



In $\triangle ADB$, $\angle ADB = 90^{\circ}$... [Given]

$$AB^2 = AD^2 + DB^2$$
 ... [Pythagoras theorem]

$$\therefore AB^2 = AD^2 + (3CD)^2 \dots [From (i)]$$

$$\therefore AB^2 = AD^2 + 9CD^2 \dots (ii)$$

In $\triangle ADC$, $\angle ADC = 90^{\circ}$... [Given]

$$AC^2 = AD^2 + CD^2$$
 [Pythagoras theorem]

$$\therefore AD^2 = AC^2 - CD^2 \dots (iii)$$

$$AB^2 = AC^2 - CD^2 + 9CD^2$$
 ... [From (ii) and(iii)]

$$\therefore AB^2 = AC^2 + 8CD^2 \dots (iv)$$

$$CD + DB = BC \dots [C - D - B]$$

$$\therefore$$
 CD + 3CD = BC ... [From (i)]

$$\therefore$$
 4CD = BC

$$\therefore CD = \frac{BC}{4} \dots (v)$$

$$AB^2 = AC^2 + 8\left(\frac{BC}{4}\right)^2$$
 ... [From (iv) and (v)]

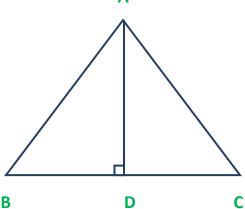
 \therefore 2AB² = 2AC² + BC² ...[Multiplying both sides by 2]

Ans: $2AB^2 = 2AC^2 + BC^2$

Q. 45

In acute angled triangle ABC, seg BD \perp seg BC, B – D

- C, \angle B < 90°; then prove that $AC^2 = AB^2 + BC^2$ -



SOLUTION:

In \triangle ADB, \angle ADB = 90°

.. By Pythagoras theorem,

$$AB^2 = AD^2 + BD^2 \dots (1)$$

In \triangle ADC, \angle ADC = 90°

.. By Pythagoras theorem,

$$AC^2 = AD^2 + DC^2$$

:.
$$AC^2 = AD^2 + (BC^2 - BD^2)$$
 ... $(B - D - C)$

$$\therefore AC^2 = AD^2 + BC^2 - 2BC.BD + BD^2$$

$$\therefore AC^2 = (AD^2 + BD^2) + BC^2 - 2BC.BD$$

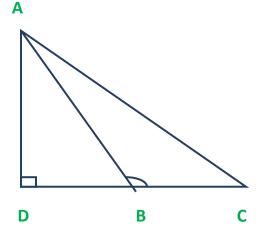
:.
$$AC^2 = AB^2 + BC^2 - 2 BC.BD ... [From (1)]$$

Q. 46

In obtuse angled \triangle ABC, \angle B > 90°, if seg AD $^{\perp}$ side BC and D - B - C, then prove that AC² = AB² + BC² +

2 BC.DB

SOLUTION:



In \triangle ADB \angle ADB = 90°

.. By Pythagoras theorem,

$$AB^2 = AD^2 + DB^2 \dots (1)$$

In \triangle ADC, \angle ADC = 90°

:. By Pythagoras theorem,

$$AC^2 = AD^2 + DC^2$$

:.
$$AC^2 = AD^2 + (DB^2 + BC^2)$$
 ... $(D - B - C)$

$$\therefore AC^2 = AD^2 + DB^2 + 2DB.BC + BC^2$$

$$\therefore AC^2 = (AD^2 + DB^2) + BC^2 + 2DB.BC$$

:.
$$AC^2 = AB^2 + BC^2 + 2 BC.DB ... [From (1)]$$

Q. 47

Find AB and BC with the help of information given in figure. \Box

SOLUTION:

$$AB = BC \dots (Given)$$

$$\angle$$
 BAC = 45°

$$\therefore AB = BC = \frac{1}{\sqrt{2}} \times AC$$

$$= \frac{1}{\sqrt{2}} \times \sqrt{8}$$

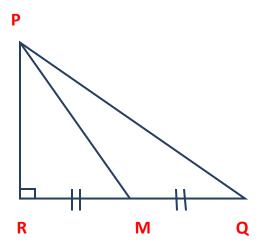
$$= \frac{1}{\sqrt{2}} \times 2\sqrt{2}$$

$$= 2$$

$$\therefore AB = BC = 2$$

Q. 48

In the figure, M is the midpoint of QR. \angle PRQ = 90°, Prove that PQ² = 4PM² – 3PR²



SOLUTION:

In
$$\triangle$$
 PRQ, \angle PRQ = 90° ... (Given)

.. By Pythagoras theorem,

$$\mathbf{PQ}^2 = \mathbf{PR}^2 + \mathbf{QR}^2 \qquad \dots (1)$$

In
$$\triangle$$
 PRM, \angle PRM = 90° ... (Given)

.. By Pythagoras theorem,

$$PM^2 = PR^2 + RM^2 \qquad \dots (2)$$

 $RM = \frac{1}{2} RQ \dots (M \text{ is the midpoint of seg } RQ) \dots (3)$

:.
$$PM^2 = PR^2 + \left(\frac{1}{2}RQ\right)^2$$
 ... [From (2) and (3)]

$$\therefore \mathbf{P}\mathbf{M}^2 = \mathbf{P}\mathbf{R}^2 + \frac{1}{4}\mathbf{R}\mathbf{Q}^2$$

Multiplying each term with 4 we get,

$$4PM^2 = 4PR^2 + RQ^2$$

$$\therefore 4PM^2 = 3PR^2 + (PR^2 + RQ^2)$$

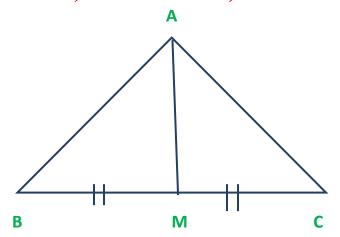
:.
$$4PM^2 = 3PR^2 + PQ^2$$
 ... [From (1)]

$$\therefore 4PM^2 - 3PR^2 = PQ^2 OR$$

$$PQ^2 = 4PM^2 - 3PR^2$$

Q. 49

In \triangle ABC, point M is the midpoint of side BC. If AB² + AC² = 290 cm², AM = 8 cm, find BC



SOLUTION:

In \triangle ABC, seg AM is the median ... (Given)

.: By Appollonius theorem,

$$AB^2 + AC^2 = 2AM^2 + 2BM^2$$

$$\therefore 290 = 2 (8)^2 + 2BM^2$$

$$\therefore 290 = 128 + 2BM^2$$

$$\therefore 290 - 128 = 2BM^2$$

$$\therefore 2BM^2 = 162$$

$$\therefore \mathbf{BM}^2 = \mathbf{81}$$

 \therefore BM = 9 cm

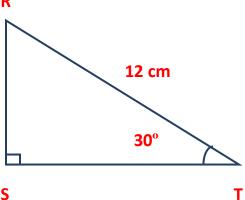
BM = $\frac{1}{2}$ BC ... (M is the midpoint of side BC)

$$\therefore 9 = \frac{1}{2} BC$$

 \therefore BC = 18 cm

Q. 50

In \triangle RST, \angle S = 90°, \angle T = 30°, RT = 12 cm, then find RS and ST



SOLUTION:

In \triangle RST,

 \angle RST + \angle SRT + \angle RTS = 180° ... (Sum of all angles of a triangle is 180°)

$$\therefore 90^{\circ} + \angle SRT + 30^{\circ} = 180^{\circ}$$

$$\therefore \angle SRT + 120^{\circ} = 180^{\circ}$$

$$\therefore \angle SRT = 180^{\circ} - 120^{\circ}$$

$$\therefore \angle SRT = 60^{\circ}$$

$$\therefore \Delta$$
 SRT is a 30° - 60° - 90° triangle

$$\therefore$$
 By 30° - 60° - 90° triangle theorem,

$$RS = \frac{1}{2} RT$$
 ... (Side opposite to 30°)

$$\therefore \mathbf{RS} = \frac{1}{2} \times \mathbf{12}$$

$$\therefore$$
 RS = 6 cm

$$ST = \frac{\sqrt{3}}{2} RT$$
 ... (Side opposite to 60°)

$$\therefore \mathbf{ST} = \frac{\sqrt{3}}{2} \times \mathbf{12}$$

$$\therefore \mathbf{ST} = 6\sqrt{3} \mathbf{cm}$$

Ans.: RS = 6 cm and ST =
$$6\sqrt{3}$$
 cm