
2 Parallel lines

Extra Questions

Q.1) In the given figure, what value of *x* will make POQ straight line. (3 mark)

 $\angle POR$ and $\angle ROQ$ are linear pair.

Sum of linear pairs are 180⁰

$$\therefore m \angle POR + m \angle QOR = 180^{\circ}$$

$$4x - 36^{\circ} + 3x + 20^{\circ} = 180^{\circ}$$

$$4x + 3x - 36 + 20 = 180$$

$$7x - 36 + 20 = 180$$

$$7x - 16 = 180$$

$$7x = 180 + 16$$

$$7x = 196$$
$$x = \frac{196}{7}$$
$$x = 28.$$

Q.2) Two parallel lines intersect a transversal measure of interior angle ratio is 3:7, then how much large angle will be between two angles? (3 mark)

Solution-

The measure of interior angle ratio 3:7

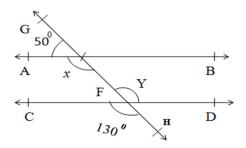
Let equal ratio be x.

Measure of these angles are 3x and 7x respectively.

$$3x + 7x = 180^{\circ}$$

$$10x = 180^{\circ}$$

$$x = \frac{180^0}{10}$$


∴
$$x = 18^{\circ}$$

- ∴ Measure of large angle $(7x) = 7 \times 18^0 = 126^0$
- ∴ Measure of large interior angle 1260-
- Q.3) If $(3x 58^{\circ})$ and $(x + 38^{\circ})$ are supplementary, then find x. (3 mark)

Solution- Sum of linear pairs are 180°.

$$(3x - 58^{0}) + (x + 38^{0}) = 180^{0}$$

 $3x - 58^{0} + x + 38^{0} = 180^{0}$
 $3x + x + 38^{0} - 58^{0} = 180^{0}$
 $4x - 20^{0} = 180^{0}$
 $4x = 180^{0} + 20^{0}$
 $4x = 200^{0}$
 $x = \frac{200^{0}}{4}$
 $x = 50^{0}$

Q.4) In the figure, find the value of x and y then show that

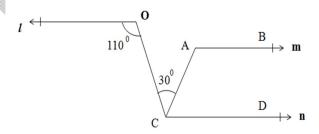
Solution- Ray AE stands on line GH.

$$\therefore$$
 \angle AEG + \angle AEH = 180⁰ ... Linear pair

$$\therefore 50^0 + x = 180^0$$

$$x = 180^{\circ} - 50^{\circ}$$

$$x = 130^0$$
 ... (I)


 $\therefore y = 130^{\circ}$ ----vertically opposite angle .. (II) From I and II

$$x = y$$

But these are alternate interior angle and they are equal.

So we can say that $AB \parallel CD$.

Q.5) Line $1 \parallel \text{line m} \parallel \text{line n}$ then from the figure find the measure of $\angle A$. (4 mark)

Solution- line 1 || line n ----- (given)

$$\therefore \angle O = \angle OCD$$
 ... (Alternate angles)

$$\therefore \angle OCD = 110^{0} \qquad \dots \because \angle O = 110^{0}$$

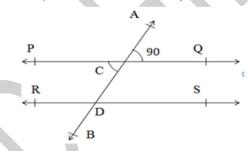
$$\therefore$$
 \angle OCA + \angle ACD = \angle OCD ... (Adjacent angles)

$$30^{\circ} + \angle ACD = 110^{\circ}$$

$$\therefore \angle ACD = 110^{\circ} - 30^{\circ}$$

$$\angle ACD = 80^{\circ}$$

line m || line n ... (given)


$$\angle A + \angle ACD = 180^{\circ}$$
 ... interior angle

$$\therefore \angle A + 80^0 = 180^0$$

$$\therefore \angle A = 180^{\circ} - 80^{\circ}$$

$$\therefore \angle A = 100^{\circ}$$

Q.6) In the figure line PQ || line RS and line AB is their transversal $\angle ACQ = 80^{\circ}$. Find the measure of following angles. I) $\angle PCA$ II) $\angle QCD$ III) $\angle CDS$ IV) $\angle RDB$ (4 mark)

Solution-

$$\angle ACQ + \angle PCA = 180^{0}$$
 ... (linear pair)
 $80^{0} + \angle PCA = 180^{0}$... ($\angle ACQ = 80^{0}$ given)
 $\angle PCA = 180^{0} - 80^{0}$
 $\angle PCA = 100^{0}$

$$\angle QCD = \angle PCA$$
 ---- vertically opposite angles

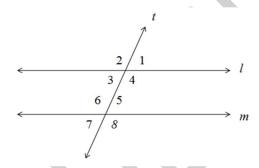
$$\therefore \angle QCD = \angle PCA = 80^{\circ}$$

$$\therefore \angle QCD = 80^{\circ}$$

III) ∠CDS

line PQ ∥ line RS and AB is transversal

$$\therefore$$
 \angle ACQ = \angle CDS ...property of corresponding angles of parallel lines


$$\therefore \angle ACQ = \angle CDS = 80^{\circ}$$

$$\therefore$$
 \angle CDS = 80⁰

IV) ∠ RDB

$$\angle$$
 CDS = \angle RDB ---- vertically opposite angles \therefore \angle RDB = 80°

Q.7) In the given figure, l / / m and a transversal cuts them. If $\angle 1=70^{\circ}$. Find the measure of each of the remaining marked angles. (4 mark)

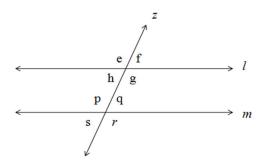
Solution- Clearly, a ray t stands on line l making adjacent angles of $\angle 1$ and $\angle 2$.

$$\therefore \angle 1 + \angle 2 = 180^{0}$$

$$70^{0} + \angle 2 = 180^{0}$$

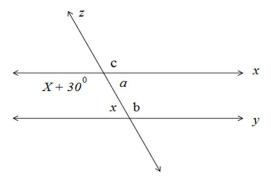
$$\angle 2 = 180^{0} - 70^{0}$$

$$\angle 2 = 110^{0}$$


$$\therefore \angle 4 = \angle 2 = 110^{0}$$
 ---- vertically opposite angles

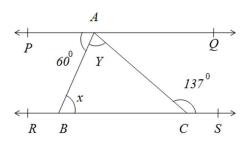
and $\therefore \angle 3 = \angle 1 = 70^{\circ}$ ---- vertically opposite angles Now, l / / m and t is the transversal

∴
$$\angle 5 = \angle 3 = 70^{0}$$
 (alternate interior of angle)
 $\angle 6 = \angle 4 = 110^{0}$ (alternate interior of angle)
 $\angle 7 = \angle 3 = 70^{0}$ (corresponding angle)


and
$$\angle 8 = \angle 4 = 110^{0}$$
 (corresponding angle)
 $\therefore \angle 2 = 110^{0}, \angle 3 = 70^{0}, \angle 4 = 110^{0}, \angle 5 = 70^{0},$
 $\angle 6 = 110^{0}, \angle 7 = 70^{0}, \text{ and } \angle 8 = 110^{0}.$

- Q.8) In the figure, line z is a transversal of line *l* and line *m*. Answer the following, (2 mark)
 - a) State pairs of alternate interior angles.
 - b) State pairs of alternate exterior angles.

Solution-


- a) Alternate interior angles. 1) $\angle h$, $\angle q$ ii) $\angle g$, $\angle p$
- b) Alternate exterior angles. 1) \angle e, \angle r ii) \angle f, \angle s
- Q.9) In the figure, parallel lines X and Y are intersected by transversal S.. Find $\angle C$, $\angle a$, $\angle b$ (4 mark)

Solution- line X || line Y, line S is a transversal.

$$x + x + 30^{\circ} = 180^{\circ}$$
 ----- Interior angle theorem)
 $2x + 30^{\circ} = 180^{\circ}$

$$2x = 180^{\circ} - 30^{\circ}$$

 $2x = 150^{\circ}$
 $x = \frac{150}{2}$
 $x = 75^{\circ}$
 $\therefore x + 30^{\circ} = 75^{\circ} + 30^{\circ} = 105^{\circ}$
 $\angle c = (x + 30^{\circ})$ ---------(vertically opposite angles)
 $\angle c = 105^{\circ}$
 $\angle a = x$ -------------(alternate angles theorem)
 $\angle a = 75^{\circ}$
 $\angle b = (x + 30^{\circ})$ ------------(alternate angles theorem)
 $\angle b = 105^{\circ}$
Thus, $\angle a = 75^{\circ}$, $\angle b = 105^{\circ}$, $\angle c = 105^{\circ}$
Q.10) In figure, line PQ || line RS. $\angle PAB = 60^{\circ}$, $\angle ACS = 137^{\circ}$. Find x and y. (4 mark)

Solution-

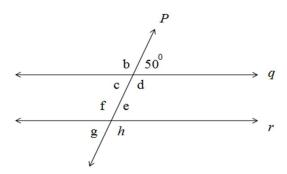
line PQ | line RS and line RS is transversal.

$$\therefore$$
 \angle QAC + \angle ACS = 180° --- interior angle theorem

$$\therefore \angle QAC + 137^0 = 180^0$$

$$\therefore \angle QAC = 180^{\circ} - 137^{\circ}$$

$$\therefore \angle QAC = 43^0 \qquad \dots I)$$


line PQ || line RS and line AB is transversal

$$\angle$$
 PAB \cong \angle ABC ----- (II) Alternate angles theorem

$$\angle PAB = 60^{\circ}$$
 -----(III) (given)

∴ ∠ABC =
$$x = 60^{\circ}$$
 – (from I and II)
∠PAB + ∠BAC + ∠QAC = 180° – (Angles in a linear pair)
∴ 60° + y + 43° = 180°
y + 103° = 180°
y = 180° – 103°
y = 77°
∴ $x = 60^{\circ}$ and $y = 77^{\circ}$

Q.11) In the adjoining figure, If line $q \parallel line r$ and line P is transversal, then find the value of c,e,h. (3 mark)

Solution-

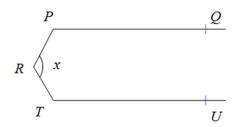
$$\angle c = 50^{\circ}$$
 ... (pair of vertical opposite angle)

Now, line a || line r and P is transversal.

$$\therefore \angle e = \angle c$$
 (alternate angle)

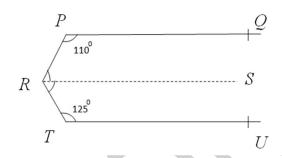
$$\therefore \angle e = 50^{\circ}$$

Now,
$$\angle h + \angle e = 180^{\circ}$$
 ... angle in linear pair


$$\therefore \angle h + 50^0 = 180^0$$

$$\therefore \angle h = 180^{0} - 50^{0}$$

$$\therefore \angle h = 130^{\circ}$$


$$\therefore \angle c = 50^{\circ}, \angle e = 50^{\circ}, \angle h = 130^{\circ}$$

Q.12) In the adjoining figure, PQ || TU and
$$\angle$$
PRT = x^0 . If \angle RPQ = 110⁰ and \angle RTU = 125⁰ then find x. (4 mark)

Solution- Through O draw RS || PQ || TU.

Then $\angle PRS + \angle TRS = x^0$

Now,

PO | RS and PR is a transversal

$$\therefore \angle RPQ + \angle PRS = 180^{0}$$

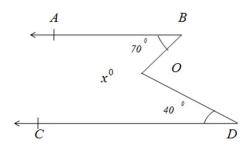
 $110^{0} + \angle PRS = 180^{0}$
 $\angle PRS = 180^{0} - 110^{0}$
 $\angle PRS = 70^{0}$

Let, TU | RS and RT is a transversal

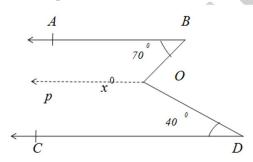
$$\therefore \angle TRS + \angle RTU = 180^{0}$$

$$\therefore \angle TRS + 125^{0} = 180^{0}$$

$$\therefore \angle TRS = 180^{0} - 125^{0}$$

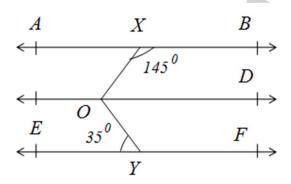

$$\therefore \angle TRS = 55^{0}$$

$$\therefore \angle PRT = \angle PRS + \angle TRS$$


$$= 70^{0} + 55^{0}$$

$$= 125^{0}$$

Q.13) If AB \parallel CD, \angle ABO = 70° , \angle CDO = 40° then find $\angle x$ (4 mark)


Solution- Through O draw OP || AB.

$$\angle$$
 BOP + \angle DOP = \angle x
 \therefore \angle x = 110⁰ + 140⁰ ---- (From I and II)
 \angle x = 250⁰

Q.14) In the given diagram, line AB | line OD | line EF then

$$\angle$$
 BXO = 145⁰] \angle EYO = 35⁰ Find \angle XOY (3 mark)

Solution-

Line AB | OD] XO is a transversal

$$\angle$$
 BXO + \angle XOD = 180 $^{\circ}$

... interior angle theorem

$$145^{\circ} + \angle XOD = 180^{\circ}$$

$$\angle XOD = 180^{\circ} - 145^{\circ}$$

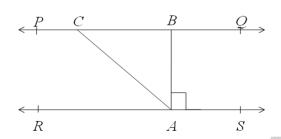
$$\angle XOD = 35^{\circ}$$

line OD | EF] DY is a transversal,

... alternate angle theorem

$$\angle OYE = 35^{\circ}$$

...given


$$\angle DOY = 35^{\circ}$$

$$\therefore \angle XOY = \angle XOD + \angle DOY$$

$$= 35^{0} + 35^{0}$$

$$= 70^{0}$$

Q.15) In the adjoining figure, If PQ || RS, AB \perp RS and \angle CAS = 138°, \angle PCA, \angle CAB and \angle BCA (4 mark)

Solution-PQ | RS and CA is transversal

: Interior angle are same

$$\therefore$$
 \angle PCA = \angle CAS

But
$$\angle$$
 CAS = 138° - - - - - - given

$$\therefore$$
 ∠ PCA = 138⁰

Now,

$$= \angle CAS = 138^{\circ}$$

$$\angle CAB + \angle BAS = \angle CAS$$

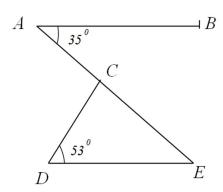
$$\angle CAB + 90^0 = 138^0$$

$$\angle CAB = 138^{\circ} - 90^{\circ}$$

$$\angle CAB = 48^{\circ}$$

PQ || RS and CA is transversal

$$\therefore$$
 \angle BCA + \angle CAS = 180°


$$\therefore \angle BCA + 138^0 = 180^0$$

$$\therefore \angle BCA = 180^{\circ} - 138^{\circ}$$

$$\therefore$$
 ∠ BCA = 42°

$$\therefore$$
 \angle PCA = 138° , \angle CAB = 48° , \therefore \angle BCA = 42°

Q.16) In the adjoining figure, if AB \parallel DE, \angle BAC = 35° and \angle CDE = 53° Find \angle DCE (4 mark)

Solution- AB || DE and AE is a transversal

 \therefore \angle BAC = \angle AED ----- (Interior alternate angle) But,

$$\angle$$
 BAC = 35°

--- given

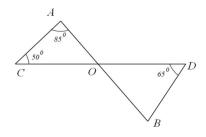
$$\therefore \angle AED = 35^{\circ}$$

In, △ CED,

 \angle CDE + \angle DEC + \angle DCE = 180°(Sum properties of angle)

$$53^{\circ} + 35^{\circ} + \angle DCE = 180^{\circ} - - - \text{(given)}$$

$$\therefore \angle DCE = 180^{\circ} - 53^{\circ} - 35^{\circ}$$


$$\therefore \angle DCE = 180^{\circ} - 88^{\circ}$$

$$\therefore \angle DCE = 92^{\circ}$$

Q.17) In the given figure, line AB and line CD intersect at

point O, then
$$\angle ACO = 50^{\circ}$$
, $\angle CAO = 85^{\circ}$, $\angle ODB = 65^{\circ}$,

Find
$$\angle$$
 DBO (4 mark)

$$\angle A + \angle C + \angle AOC = 180^{\circ}$$
(sum properties of angle)

$$85^{\circ} + 50^{\circ} + \angle AOC = 180^{\circ}$$

$$135^0 + \angle AOC = 180^0$$

$$\angle AOC = 180^{0} - 135^{0}$$

$$\angle AOC = 45^{0}$$

But,

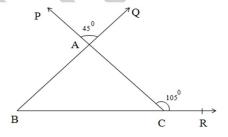
AB and CD intersect at point O.

$$\angle$$
 AOC = \angle BOD

$$\angle$$
 BOD = 45° — vertically opposite angle

In \triangle OBD

$$\angle$$
 OBD + \angle DOB + \angle D = 180° (Sum properties of angle)


$$65^{\circ} + 45^{\circ} + \angle DBO = 180^{\circ}$$

$$\angle DBO = 180^{\circ} - 65^{\circ} - 45^{\circ}$$

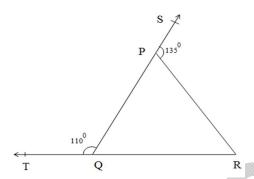
$$\angle DBO = 180^{\circ} - 110^{\circ}$$

$$\angle DBO = 70^{\circ}$$

Q.18) In adjoining figure, Find m ∠ABC (3 mark)

Solution-

$$\angle$$
 PAQ = \angle BAC — vertically opposite angle


$$\therefore \angle BAC = 45^{\circ}$$

Now,
$$\therefore \angle ACR = \angle ABC + \angle BAC = 105^{\circ}$$

$$\therefore \angle ABC = 105^{0} - 45^{0}$$

$$= 60^{0}$$

Q.19) In the adjoining figure, sides QP and RQ of Δ PQR are produced to point S and T respectively. If ∠ SPR = 135⁰,
 ∠ PQT = 110⁰. Find ∠ PRQ (3 mark)

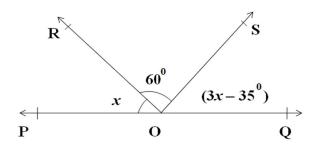
Solution-

TQR is a straight line.

$$\angle TQR + \angle PQR = 180^{\circ}$$
 -- linear pair

$$110^{0} + \angle PQR = 180^{0}$$

$$\angle PQR = 180^{0} - 110^{0}$$


$$\angle PQR = 70^{\circ}$$

Since the side QP of Δ PQR is produced to S.

Exterior angle so formed is equal to the sum of interior opposite angles.

$$\angle PQR + \angle PRQ = 135^{0}$$
 $70^{0} + \angle PRQ = 135^{0}$ [: PQR = 70^{0}]
 $\angle PRQ = 135^{0} - 70^{0}$
 $\angle PRQ = 65^{0}$

Q.20) In the adjoining figure, find $\angle POR$ and $\angle QOS$ (3 mark)

Solution-POQ is a straight line, then,

$$\angle$$
 POR + \angle ROS + \angle QOS = 180° - - - linear pair

$$x + 60^0 + (3x - 35^0) = 180^0$$

$$x + 60^{\circ} + 3x - 35^{\circ} = 180^{\circ}$$

$$x + 3x = 180^0 + 35 - 60$$

$$4x = 180 - 24$$

$$4x = 156$$

$$x = \frac{156}{4}$$

$$x = 39$$

$$\angle QOS = 3x - 35^{0}$$

$$= 3(39) - 35^{0}$$

$$= 123 - 35^{0}$$

$$= 82$$

Q.21) In the adjoining figure, PQ \parallel RS then find the value of x. (3 mark)

Solution-

Let us draw AB || PQ.

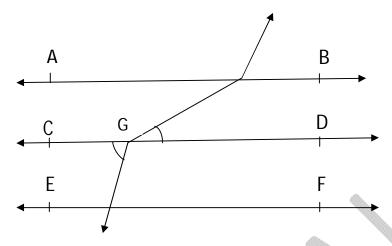
$$\therefore$$
 PQ || RS

Now AB || RS and RD is a transversal then,

$$\angle 1 = 35^{0} - - -$$
 (Alternate Angle)

Similarly,

$$\angle 2 = 45^{\circ}$$


Adding
$$\angle 1 + \angle 2 = 35^0 + 45^0$$

$$x = 80^{0}$$

$$\therefore x = 80^{0}$$

Q.22) In the adjoining figure, AB \parallel CD \parallel EF, PQ \parallel

RS.
$$\angle$$
 RQD = 35° and \angle CQP = 70° Find \angle QRS (4 mark)

Solution -

CD is line and extend ray QP.

$$\therefore$$
 \angle CQP + \angle PQD = 180°

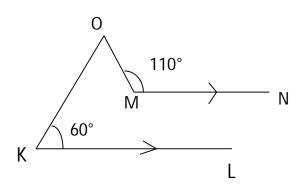
$$\therefore 70^0 + \angle PQD = 180^0$$

$$\angle PQD = 180^0 - 70^0$$

$$\angle PQD = 110^{0}$$

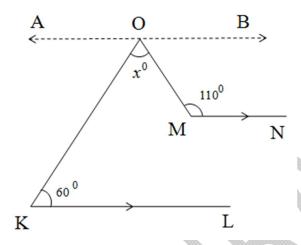
$$\therefore$$
 \angle PQR = \angle PQD + \angle RQD

$$= 110^{0} + 35^{0} = 145^{0}$$


Now,

PQ || RS and QR is a transversal.

$$\therefore$$
 \angle QRS = \angle PQR = 145⁰ - -(interior alternate angle)


$$\therefore \angle QRS = 145^{\circ}$$

Q.23) In the adjoining figure, KL || MN \angle LKO = 60° \angle KOM = x and \angle OMN = 110° then find the value of x (4 mark)

Solution -

Through O draw a line AOB || KL || MN Now,

AO | KL and OK is the transversal

 \therefore \angle AOK = \angle OKL = 60° – alternate interior angle.

OB || MN and OM is the transversal.

$$\therefore$$
 ∠ BOM + ∠ OMN = 180⁰ interior angle

$$\angle$$
 BOM + 110 0 = 180 0

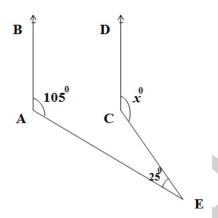
$$\angle BOM = 180^{\circ} - 110^{\circ}$$

$$\angle$$
 BOM = 70°

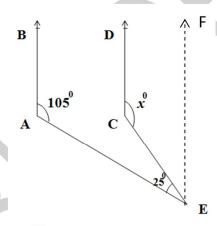
Now, AOB is a straight line.

$$\therefore$$
 \angle AOK + \angle KOM + \angle BOM = 180° - -straight line

$$60^0 + x^0 + 170^0 = 180^0$$


$$x^0 + 230^0 = 180^0$$

$$230^{0} - 180^{0} = x^{0}$$


$$x^0 = 50^0$$

$$\therefore x = 50^0$$

Q.24) In the given figure, AB || CD,
$$\angle$$
 EAB = 105⁰, \angle AEC = 25⁰ and \angle ECD = x^0 . Find the value of x. (4 mark)

Solution − From E, draw EF || AB || CD

EF ∥ CD and CE is transversal.

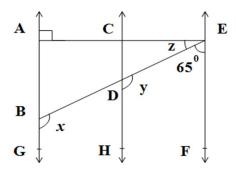
∴
$$\angle DEC + \angle CEF = 180^{0} - -$$
corresponding angles $x^{0} + \angle CEF = 180^{0}$ $\angle CEF = (180^{0} - x^{0})$ Again, EF || AB and AE is the transversal.

 \therefore ∠BAE + ∠AEF = 180° − −corresponding angle

$$105^{0} + \angle AEC + \angle CEF = 180^{0}$$

$$105^{0} + 25^{0} + (180^{0} - x^{0}) = 180^{0}$$

$$105^{0} + 25^{0} + 180^{0} - x^{0} = 180^{0}$$


$$130^{0} + 180^{0} - x^{0} = 180^{0}$$

$$310^{0} - x^{0} = 180^{0}$$

$$310^{0} - 180^{0} = x^{0}$$

$$\therefore x = 130^{0}$$

Q.25) In the given figure, AB \parallel CD \parallel EF, \angle DBG = x] \angle EDH = y] \angle AEB = z] \angle EAB = 90° and \angle BEF = 65°. Find the value of x, y and z. (4 mark)

Solution-

EF || CD and ED is the transversal.

∴ ∠FED + ∠EDH =
$$180^{0}$$
— (interior angle)
 $65^{0} + y = 180^{0}$
 $y = 180^{0} - 65$
 $y = 115^{0}$

Now,

CH || AG and DB is the transversal.

$$\therefore x = y = 115^0 \dots$$
 (Corresponding angle)

Now, ABG is a straight line.

$$\therefore$$
 \angle ABE + \angle EBG = 180⁰ (linear pair)

$$\therefore \angle ABE + x = 180^{0} - (x = 115^{0})$$

$$\therefore \angle ABE + 115^0 = 180^0 \square \square$$

$$\therefore \angle ABE = 180^{0} - 115^{0}$$

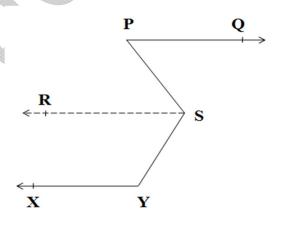
$$\therefore \angle ABE = 65^{\circ}$$

We know that the sum of the angles of a triangle is 180° In \triangle EAB we get,

$$\angle$$
 EAB + \angle ABE + \angle BEA = 180°

$$90^0 + 65^0 + z = 180^0$$

$$155^0 + z = 180^0$$


$$z = 180^{0} - 155^{0}$$

$$z = 25^{0}$$

$$\therefore x = 115^{\circ}, y = 115^{\circ}] z = 25^{\circ}$$

Q.26) In the adjoining figure, XY || PQ, Prove that,

$$\angle XYS + \angle YSP = 180^{\circ} + \angle SPQ \cdot (4 \text{ mark})$$

Solution –

Construction- Draw SR || YX

Proof- SR || YX and SY is the transversal

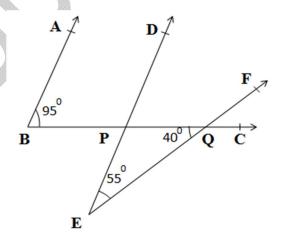
$$\therefore$$
 \angle XYS + \angle YSR = 180° – –(I) Interior angle

Now,

RS || PQ and PS is the transversal.

$$\therefore$$
 \angle RSP = \angle SPQ -- (II) --- Alternate Angle

From I and II


Left side = Right side

$$\therefore$$
 \angle XYS + \angle YSR + \angle RSP = 180° + \angle SPQ

$$\therefore$$
 \angle XYS + \angle YSP = 180° + \angle SPQ

$$-- (\angle YSR + \angle RSP = \angle YSP)$$

Q.27) In the given figure, $\angle ABC = 70^{\circ}$ and $\angle DEF = 55^{\circ}$. the arms DE and EF of $\angle DEF$ at BC at P and Q respectively. Prove that PD \parallel BA.

Solution-

Let
$$\angle EPQ = x^0$$

We know that the sum of the angles of triangle is 180°

$$\therefore$$
 ∠ EPQ + ∠ PEQ + ∠ EQP = 180°

$$\angle EPQ + 55^{0} + 40^{0} = 180^{0}$$

$$\angle EPQ + 95^0 = 180^0$$

$$\angle EPQ = 180^{0} - 95^{0}$$

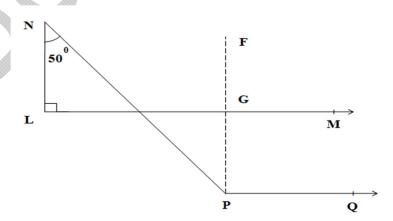
$$\therefore$$
 ∠ EPQ = 85°

Now, EPD is a straight line.

$$\therefore$$
 ∠ EPQ + ∠ DPQ = 180°

$$85^{\circ} + \angle DPQ = 180^{\circ}$$

$$\angle DPQ = 180^0 - 85^0$$


$$\angle DPQ = 95^{\circ}$$

$$\therefore$$
 \angle ABP = \angle DPQ - - - (each 95°)

But these are corresponding angles.

Hence, PD || BA

Q.28) In the given figure, LM
$$\parallel$$
 PQ. \angle L = 90 0 and \angle LNP = 50 0] Find \angle NPQ (4 mark)

Solution- Through P draw PF || LN,

cutting LM at G.

Now, PF || LN and NP is the transversal.

$$\therefore$$
 \angle NPG = \angle LNP = 50⁰— (alternate angle)

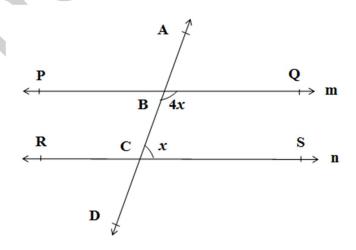
Now,

PF || LN and LGM is a transversal.

$$\therefore$$
 \angle FGM = \angle NLG = 90°— (corresponding angle)
Again,

LM || PQ and GP is a transversal.

$$\therefore$$
 \angle GPQ = \angle FGM = 90⁰— II) Corresponding angle


$$\therefore$$
 \angle NPQ = \angle NPG + \angle GPQ— (sum of angle)

$$= 50^{0} + 90^{0} - -$$
from II

$$= 140^0$$

$$\therefore \angle NPQ = 140^{\circ}$$

Q.29) In the given figure, if line $m \parallel line n$ and line P is a transversal then find x. (3 mark)

line m || line n and line P is a transversal.

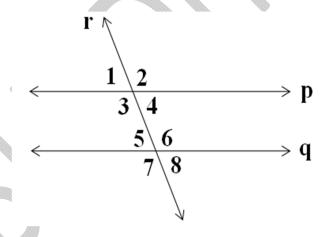
$$\therefore \angle QBC + \square = 180^0 = ... (__)$$

$$\therefore$$
 = 180⁰

$$\therefore x =$$

Solution- line m || line n and line P is a transversal.

$$\therefore$$
 \angle QBC + \angle BCS = 180° = ... (interior angle)


$$\therefore \boxed{4x + x} = 180^0$$

$$5x = 180^0$$

$$\therefore x = \boxed{\frac{180^0}{5}}$$

$$\therefore x = 36^{0}$$

Match the following in adjoining figure (1 mark each)

Q.30) State the pair of interior angle.

Solution- $\angle 4$, $\angle 6$, and $\angle 3$, $\angle 5$.

Q.31) State the pairs of corresponding angle.

Solution : $\angle 1$, $\angle 5$, and $\angle 2$, $\angle 6$

$$\angle 3$$
, $\angle 7$ and $\angle 4$, $\angle 8$ -

Q.32) State the pairs of vertically opposite angle.

Solution -
$$\angle$$
 1, \angle 4 and \angle 2, \angle 3 \angle 6, \angle 7 and \angle 5, \angle 8

Q.33) State the pairs of interior alternate angle.

Solution -
$$\angle 3$$
, $\angle 6$ and $\angle 4$, $\angle 5$

Q.34) State the pairs of exterior alternate angle.

Solution -
$$\angle 1$$
, $\angle 8$ and $\angle 2$, $\angle 7$

Which of the following statement are true or false.

Q.35) The angles in a linear pair are supplementary.

Solution- True.

Q.36) If one of the pairs of alternate angles is not congruent then the lines are parallel.

Solution- False.

Reason- If one of the pairs of alternate angles is congruent then the lines are parallel.

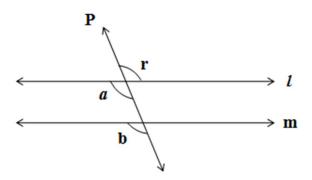
Q.37) The sum of measures of all angles of a triangle is 360° .

Solution- False

Reason – The sum of measures of all angles of a triangle is 180° .

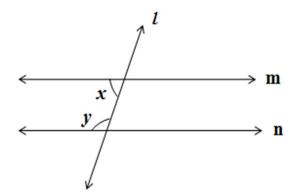
Q.38) When two lines intersect, the pairs of opposite angles formed are different.

Solution: False


Reason – When two lines intersect, the pairs of opposite angles formed are congruent.

Q.39) If two parallel lines are intersected by a transversal, theInterior angles on either side of the transversal are supplementary.Solution – True.

Q.40) If a line is perpendicular to two lines in a plane, then the two lines are parallel to each other.

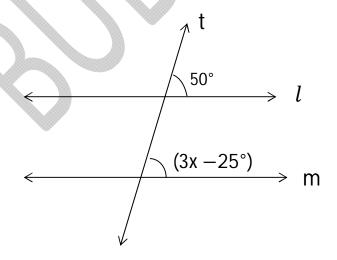

Solution – True.

Q.41) In the adjoining figure, line $l \parallel$ line m and P is a transversal. If $r = 140^{\circ}$ then find a and b. (3 marks)

Solution – line $l \parallel$ line m and P is a transversal.--- (given) $\angle r = \angle a$ ------ (vertically opposite angle) $140^0 = \angle a$ $\therefore \angle a = 140^0$ $\therefore \angle b = 140^0$ ------ (corresponding angle) $\therefore \angle a = 140^0$ and $\angle b = 140^0$

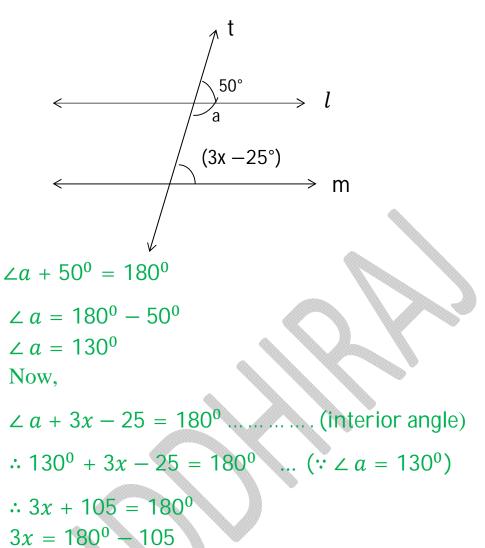
Q.42) In the adjoining figure, $x = 71^{0}$ and $y = 70^{0}$ then line m || line n these statement are true or false. (3 marks)

Solution - $x = 71^{\circ}$ and $y = 70^{\circ}$ — (given)

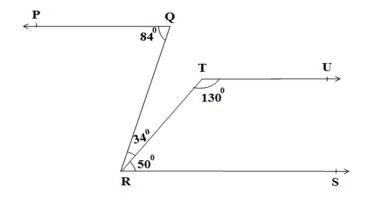

line m || line n and l is the transversal.

 $\angle x$ and $\angle y$ are the pair of the alternate angles.

From pair of interior angle, $\angle x$ and $\angle y$ are not supplementary.


line n || line n are not parallel.

Q.43) In the adjoining figure, line 1 \parallel line m and line t is the transversal is then find the value of x. (4 marks)


Solution – In this figure, Take $\angle a$.

 $\angle a$ and measure of angle 50° are linear pair.

3x = 75

x = 25

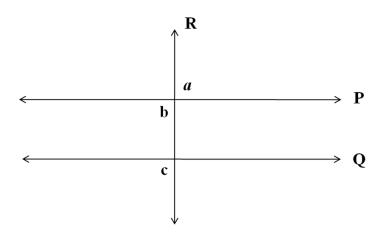
Solution:

$$m \angle QRT + m \angle TRS = m \angle QRS$$

$$\therefore 34^{\circ} + 50^{\circ} = \text{m} \angle QRS - -\text{In figure}$$

$$\therefore m \angle QRS = 84^{\circ} \qquad \qquad \dots (I)$$

Ray QP and Ray RS these lines have RQ as transversal.


$$\therefore$$
 \angle PQR = \angle QRS— (alternate angle)

$$\therefore \mathsf{m} \angle \mathsf{PQR} = 84^{0} \qquad \dots (II)$$

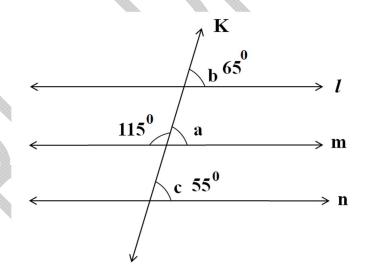
∴ Ray QP ||Ray RS (Test of alternate angle) Now,

$$m \angle T + m \angle TRS = 130^{0} + 50^{0}$$

= 180^{0}

- ∴ Ray RS || Ray TU --- (IV) Test of interior angle
- ∴ Ray QP || Ray TU --- (from II and IV)
- Q.45) In the adjoining figure line P || line Q and line R is the transversal. If $a = 40^{\circ}$ then find a : b (3 mark)

Solution - $\angle a = \angle b$ ----(Pair of vertically opposite angle)


$$\angle b = 40^{\circ} - (\because \angle a = 40^{\circ})$$

$$\angle c = 180^{0} - 40^{0}$$

$$\angle c = 140^{0}$$

$$\therefore$$
 b : c = 40 : 140 = 2 : 7

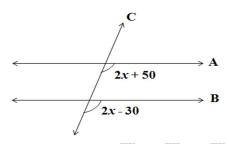
Q.46) In the adjoining figure, some measures of angles are given then two lines are parallel are not, justify. (4 mark)

Solution - $\angle a = 180^{\circ} - 125^{\circ} \dots$ angle in linear pair

$$\angle a = 65^{\circ}$$

$$\therefore \angle b = \angle a = 65^0 \qquad \dots (I)$$

line $l \parallel line m$ -----(test of corresponding angle of parallel lines)


$$\angle b \neq \angle c$$

line l and line n are not similar.

$$\angle a \neq \angle c$$

line m and line n are not similar.

Q.47) line A || line B and C is the transversal then find the value of x. (3 mark)

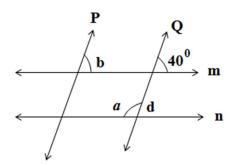
Solution -
$$(2x + 50) + (2x - 30) = 180^{\circ}$$

$$2x + 50 + 2x - 30 = 180^{\circ}$$

$$4x + 50 - 30 = 180^{\circ}$$

$$4x + 20 = 180^{\circ}$$

$$4x = 180^{\circ} - 20^{\circ}$$


$$4x = 160^{\circ}$$

$$x = \frac{160^{\circ}}{4}$$

$$x = 40^0$$

Q.48) In the adjoining figure line $l \parallel$ line m and line $n \parallel$ line P.

To find $\angle a$, $\angle b$, $\angle d$. From the given measure of an angle complete the following activity. (3 mark)

Solution: line m || line n and line Q is the transversal.

$$\angle d = \square$$
 ----- corresponding angle.

line P || line Q and line m is the transversal

$$\angle b = \square$$
 ---- corresponding angle.

Now,

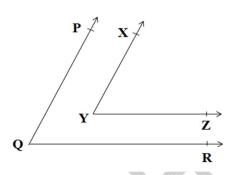
$$\angle d + \angle a = 180^{\circ}$$
 ---- (Angle in linear pair)

$$\angle a = 180^{\circ} - \Box$$

Solution -

line m || line n and line Q is the transversal.

$$\angle d = 40^{\circ}$$
 ---- corresponding angle.


line P || line Q and line m is the transversal

$$\angle b = \boxed{40^0}$$
 ----(corresponding angle.)

Now,

$$\angle d + \angle a = 180^{\circ}$$
 ---- (Angle in linear pair)

Q.49) In the adjoining figure, sides of \angle PQR and \angle XYZ are parallel to each other. Prove that \angle PQR \cong \angle XYZ-(3 mark)

Given- Ray YZ || Ray QR and Ray YX || Ray QP.

To prove - \angle PQR \cong \angle XYZ

Construction – Extend ray YZ in the opposite direction. It intersects ray QP at point S.

Proof − PQ || XY (Given)

PQ || XS and QR is the transversal.

YZ || SR and XS is a transversal.

From I and II,

Solution –

Given Ray YZ || Ray QR and Ray YX || Ray QP.

To prove - \angle PQR \cong \angle XYZ

Construction – Extend ray YZ in the opposite direction. It intersects ray QP at point S.

Proof − PQ || XY Given

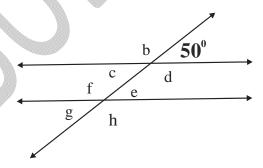
PQ || XS and QR is the transversal.

$$\angle PQR = \angle XSR$$

..(I) ... (Corresponding angle)

YZ || SR and XS is a transversal.

$$\angle XYZ \cong \angle XSR$$


--- II) (Corresponding angle)

From I and II,

$$\angle PQR \cong \angle XYZ$$

$$\angle PQR \cong \angle XYZ$$

Q.50) In the adjoining figure, if line P \parallel line q and r is the transversal then find the value of c, e and h. (3 mark)

 $\angle C = \square$ ----- (Vertically opposite angle)

Now, line q || line r and line P is their transversal.

$$\angle e = \square$$
 ----- (Alternate angle)

$$\angle e = \boxed{}$$
Now,
 $\angle h + \angle e = 180^{\circ}$ ---- (Angles in a linear pair)
 $\angle h = \boxed{}$

Solution -

$$\angle C = \boxed{50^0}$$
 -----(Vertically opposite angle)

Now, line $q \parallel$ line r and line P is their transversal.

$$\angle e = \angle C$$
 ----- (Alternate angle)

$$\angle e = \boxed{50^0}$$

Now,

$$\angle h + \angle e = 180^{\circ}$$
 (Angles in a linear pair)

$$\angle h + 50^0 = 180^0$$

$$\angle h = 180^{0} - 50^{0}$$

$$\angle h = 130^{0}$$

$$\therefore \angle C = 130^{0}, \angle e = 50^{0}, \angle h = 130^{0}$$