3. Triangles

Extra Question

Q. 1) The measure of angles of a triangles are in the ratio 3:5:7 Find the measure.

Solution:

Let the measure of the angles of a triangle.

be
$$3x, 5x, 7x$$

$$3x + 5x + 7x = 180^{\circ}$$

$$15x = 180^0$$

$$x = \frac{180}{15}$$

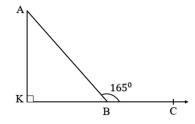
$$x=12^0$$

$$3x = 3 \times 12 = 36$$

$$5x = 5 \times 12 = 60$$

$$7x = 7 \times 12 = 84$$

- \therefore The measure of angles of the triangle are 36°, 60°, and 84°
- Q. 2) In the adjoining figure, find the measure of \angle A.



Solution:

 \triangle AKB is the exterior \angle ABC

$$\therefore \angle ABC = \angle AKB + \angle KAB$$

..... (Theorem of remote interior angle)

$$165^{\circ} = 90^{\circ} + \angle KAB$$

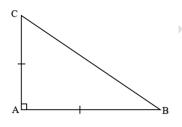
$$165^{0} - 90^{0} = \angle KAB$$

$$75^0 = \angle KAB$$

$$\therefore \angle KAB = 75^{\circ}$$

$$\therefore \angle A = 75^0$$

Q. 3) In the right \triangle ABC and AB = BC then find \angle B and \angle C.



Solution: In \triangle ABC

$$AB = AC$$
 (given)

Their opposite angle are equal.

$$\angle ACB = \angle ABC$$

Now,

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$90^{0} + \angle B + \angle C = 180^{0}$$
 $(\angle A = 90^{0})$ (given)

$$\angle B + \angle C = 180^{0} - 90^{0}$$

= 90⁰

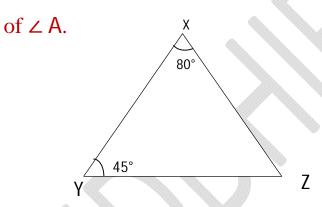
But,
$$\angle ABC = \angle ACB$$

also,
$$\angle B = \angle C$$

$$\therefore \angle B = \angle C = \frac{90^0}{2} = 45^0$$

$$\therefore \angle B = 45^{\circ} \text{ and } \angle C = 45^{\circ}$$

Q. 4) In \triangle XYZ \angle X = 80° , \angle Y = 45° then. Find the measure



Solution: In \(\Delta \text{ XYZ} \)

$$\angle X + \angle Y + \angle Z = 180^{\circ}$$

....(Sum of measure of interior angle of a triangle)

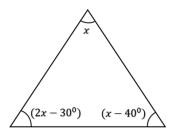
$$30^{\circ} + 45^{\circ} + \angle Z = 180^{\circ}$$

$$125^0 + \angle Z = 180^0$$

$$\angle Z = 180^{0} - 125^{0}$$

$$\angle Z = 55^{0}$$

Q. 5) Measure of angle of triangle is x^0 , $(2x - 30^0)$, $(x - 40^0)$ then measure of each angle?



Solution:

$$x^{0} + (2x - 30^{0}) + (x - 40^{0}) = 180^{0}$$

..... (sum of measure of interior angle of triangle)

$$x + 2x - 30^{\circ} + x - 40^{\circ} = 180^{\circ}$$

$$4x - 30^0 - 40^0 = 180^0$$

$$4x - 70^0 = 180^0$$

$$4x = 180^0 + 70^0$$

$$4x = 250$$

$$x=\frac{250}{4}$$

$$x = 62.5$$

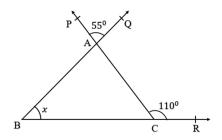
$$\therefore x = 62.5$$

$$2x - 30 = 2(62.5) - 30 = 125 - 30 = 95^{0}$$

$$x - 40 = 62.5 - 40 = 22.5$$

∴Measure of angle of triangle is 62.5, 95, 22.5 and respectively.

Q. 6) In the adjoining figure, find the value of x.



Solution : $\angle PAQ = \angle BAC$ (Vertically opposite angle)

$$\therefore$$
 \angle PAQ = 55°

$$\therefore \angle BAC = 55^{\circ}$$

Now, \angle ACR = \angle ABC + \angle BAC ... (From exterior angle)

$$110^0 = \angle ABC + 55^0$$

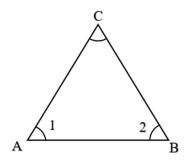
$$110^{0} - 55^{0} = \angle ABC$$

$$55^0 = \angle ABC$$

$$\therefore \angle ABC = 55^{\circ}$$

$$\therefore x = 55^{0}$$

Q. 7) In a \triangle ABC , BC = CA and \angle A = 40° which is longer AB or BC ?



Solution:

$$\triangle$$
 ABC in AC = BC

$$\therefore$$
 $\angle 1 = \angle 2....(\because AC = BC)$

and
$$\angle A = \angle 1 = 40^{0}$$

$$\angle 2 = 40^{0}$$

$$\therefore$$
 $\angle 1 + \angle 2 + \angle C = 180^{\circ}$... (sum of angle of triangle is 180°)

$$40^{0} + 40^{0} + \angle C = 180^{0}$$

$$80^0 + \angle C = 180^0$$

$$\angle C = 180^{0} - 80^{0}$$

$$\angle C = 100^{0}$$

$$\therefore \angle C > \angle A \Rightarrow AB > BC$$

∴Thus AB is greater.

Q.8) In \triangle ABC, if \angle A + \angle B = 110° and \angle B + \angle C = 132°, then find \angle A, \angle B and \angle C.

Solution - We have $\angle A + \angle B = 110^0 \dots (1)$

$$\angle B + \angle C = 132^0 \dots (2)$$

Now,

$$\angle A + \angle B + \angle C = 180^{\circ}$$
 Sum of angle of triangle is 180°

$$110^{0} + \angle C = 180^{0} \dots (\because \angle A + \angle B = 110^{0})$$

$$\angle C = 180^{0} - 110^{0}$$

$$\angle C = 70^{0}$$

Now, from II we have,

$$\angle B + \angle C = 132^{\circ}$$

$$\angle B = 132^{0} - 70^{0}$$

$$\angle B = 62^{0}$$

$$\angle A + \angle B = 110^{0}$$
..... (From I)

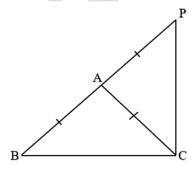
$$\angle A + 62^0 = 110^0$$

$$\angle A = 110^{0} - 62^{0}$$

$$\angle A = 48^{0}$$

$$\therefore \angle A = 48^{\circ}, \angle B = 62^{\circ} \text{ and } \angle C = 70^{\circ}$$

Q.10) In the figure ABC is a triangle in which AB = AC. side BA is produced to p such that AB = AP. Prove that \angle BCP = 90⁰



Solution -AB = AC --- given side AB and side AC are equal.

$$\angle$$
 ABC = \angle ACB..... (I) (Angles at the base)

Also, side AB = side AC

$$AC = AP - Given$$

$$:$$
 side AB = side AP

$$\angle APC = \angle ACP.....(II)$$

Adding I and II we get,

$$\angle$$
 ABC + \angle APC = \angle ACB + \angle ACP

$$\angle$$
 ABC + \angle APC = \angle BCP

$$\angle$$
 PBC + \angle BPC = \angle BCP [\therefore \angle ABC = \angle PBC and \angle APC = \angle BCP]

Adding ∠BPC to both side

$$\angle PBC + \angle BCP + \angle BCP = \angle BCP + \angle BCP$$

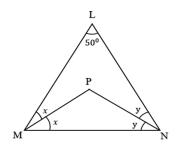
$$180^0 = 2 \angle BCP$$

$$\angle BCP = \frac{180^{\circ}}{2}$$

$$\angle$$
 BCP = 90°

∴ Thus
$$\angle$$
 BCP = 90 $^{\circ}$

Q.11) In \triangle LMN bisectors of \angle L and \angle M, intersect at the point P. If \angle N = 50 $^{\circ}$ then find the measure of \angle MPN



Solution - \angle LMP \cong \angle PMN ---- (Ray MP bisects \angle LMN)

$$\angle LMP = \angle PMN = x^0 \dots (I)$$

∠ LNP
$$\cong$$
 ∠ PNM...... (Ray NP bisects ∠ LNM)
∠ LNP = ∠ PNM = y^0 (II)
∠ LMN = ∠ LNP + ∠ PMN (Angles addition postulate)
∠ LMN = $x + x^0$ (From I)
∠ LMN = $2x^0$ (III)
Similarly ∠ LNM = $2y^0$ (IV)
In Δ LMN]
∠ MLN + ∠ LMN + ∠ LNM = 180^0
.... Sum of measures of all angles of a triangle is 180^0 ·)
∴ $50^0 + 2x + 2y = 180^0$ (From (III) and (IV))
∴ $50^0 + 2(x + y) = 180^0$
∴ $2(x + y) = 180^0 - 50^0$
∴ $2(x + y) = 130^0$
 $x + y = \frac{130^0}{2}$
 $x + y = 65^0$ (V)
In Δ MPN]
∠ MPN + ∠ PMN + ∠ PNM = 180^0
.... Sum of measures of all angles of a triangle 180^0 ·)

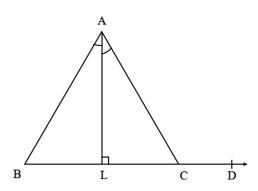
$$\therefore \angle MPN + x + y = 180^0 \dots$$
 (From I and II)
 $\therefore \angle MPN + 65^0 = 180^0 \dots$ (From V)

$$\therefore \angle MPN = 180^{0} - 65^{0}$$

$$\therefore \angle MPN = 115^0$$

Q.12) In the figure, side BC of Δ ABC is extended seg AL is angle bisector of \angle BAC of Δ ABC and B-L-C-D, prove that,

$$\angle ABC + \angle ACD = 2 \angle ALC$$



Solution In \triangle ABC,

seg AL is the angle bisector of \angle BAC,

$$\therefore$$
 \angle BAL = \angle CAL = $\frac{1}{2}$ \angle BAC.....(I)

$$\angle ACD = \angle ABC + \angle BAC.....(II)$$

----(Theorem of remote interior angle)

 \angle ALC is exterior angle of \triangle ABL

$$\therefore$$
 \angle ALC = \angle ABL + \angle BAL----(Theorem of remote interior angle)

$$\therefore \angle ALC = \angle ABC + \frac{1}{2} (\angle BAC \dots (B - L - C) \dots (From I)$$

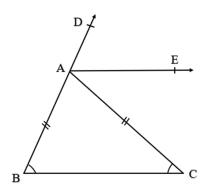
$$\therefore$$
 2 \angle ALC = 2 \angle ABC + \angle BAC..... Multiplying both sides by 2

$$\therefore$$
 2 \angle ALC = \angle ABC + \angle ABC + \angle BAC

$$\therefore$$
 2 \angle ALC = \angle ABC + \angle ACD..... (From II)

$$\therefore$$
 \angle ABC + \angle ACD = 2 \angle ALC ----- ((proved)

Q.13) In the adjoining figure, \triangle ABC is isosceles triangle AB = AC and \angle CAD is the bisector of AE then prove that AE \parallel BC.



Solution – Opposite angle of triangle sides are equal.-

$$AB = AC$$

$$\Rightarrow \angle B = \angle C$$

Now, side BA is \triangle ABC are extended to D.-

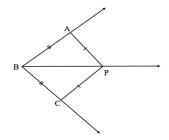
$$\therefore$$
 $\angle CAD = \angle B + \angle C....$ (Exterior angle = sum of interior opposite angle)

$$2 \angle CAE = 2 \angle C...$$
 (* $\angle B = \angle C$ and $\angle CAD = 2 \angle CAE$)

$$\angle CAE = \angle C$$

but, their are alternate interior angle.

Q.14) In the adjoining figure, write the name of congruence angle.



Solution -
$$\triangle$$
 ABP \cong \triangle CBP..... (Test of S - S - S)

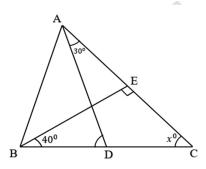
$$\angle ABP \cong \angle CBP$$

$$\angle BAP \cong \angle BCP....$$
 --- congruence of triangle in similar

$$\angle APB \cong \angle CPB$$
 angle

Q.15) In
$$\triangle$$
 ABC BE \perp AC, \angle EBC = 40° and \angle CAD = 30°. If \angle ACD = x^0 and \angle ADY = y^0 , x then find the

and



Solution -

Sum of angles of triangle is 180^o

$$\angle$$
 CBE + \angle BEC + \angle ECB = 180°

$$40^0 + 90^0 + x^0 = 180^0$$

$$130^0 + x = 180^0$$

$$x = 180^0 - 130^0$$

$$x = 50^0$$

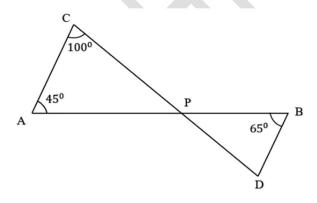
Now, ∠ ACD side CD are extended to B -

∠ BDA = ∠ DAC + ∠ ACD

$$y^{0} = 30^{0} + x^{0}$$

 $y^{0} = 30^{0} + 50^{0}$ (∵ $x = 50^{0}$)
 $y^{0} = 80^{0}$
∴ $x = 50^{0}$, $y = 80^{0}$

Q.16) In the adjoining figure, line AB and CD are intersect to point P. Then, $\angle PAB = 45^{\circ}$, $\angle ACP = 100^{\circ}$ and $\angle PBD = 65^{\circ}$ find $\angle CPA$, $\angle DPB$ and $\angle BDP$



Solution -

Sum of angles of triangle is 180°

In \triangle ACP

$$\angle PAC + \angle ACP + \angle CPA = 180^{\circ}$$

 $45^{\circ} + 100^{\circ} + \angle CPA = 180^{\circ}$

$$145^{\circ} + \angle CPA = 180^{\circ}$$

$$\angle CPA = 180^{0} - 145^{0}$$

$$\angle CPA = 35^{\circ}$$

$$\therefore$$
 \angle DPB = \angle CPA = 35° (Vertically opposite angle)

In \triangle PBD

$$\angle$$
 DPB + \angle PBD + \angle BDP = 180⁰...... (Sum of angles of a triangle)

$$35^{0} + 65^{0} + \angle BDP = 180^{0}$$

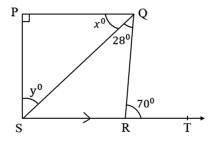
$$100^{0} + \angle BDP = 180^{0}$$

$$\angle BDP = 180^{\circ} - 100^{\circ}$$

$$\angle BDP = 80^{\circ}$$

$$\therefore$$
 \angle CPA = 35°, \angle DPB = 35°, \angle BDP = 80°

Q.17) In the adjoining figure, PQ \perp RS, PQ \parallel PR, \angle SQR = 28° and \angle QRT = 70° then \angle PQS = x° and \angle PSQ = y° Then find the value of x and y.



Solution - PQ | SRT and QR is transversal.

$$\therefore$$
 \angle PQR = \angle QRT..... (alternate interior angle)

$$\angle$$
 PQS + \angle SQR = \angle QRT

$$x + 28 = 70^{\circ}$$

$$x = 70 - 28$$
$$x = 42^{\circ}$$

In right angled \triangle PQS,

$$\angle$$
 SPQ + \angle PQS + \angle QSP = 180⁰..... (sum of angles of a triangle is 180⁰)

$$90^0 + x^0 + y^0 = 180^0$$

$$90^0 + 42^0 + y = 180^\circ$$

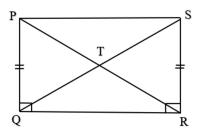
$$132^0 + y = 180^\circ$$

$$y = 180^0 - 132^0$$

$$y = 48^{0}$$

$$x = 42^{\circ}$$
, $y = 48^{\circ}$

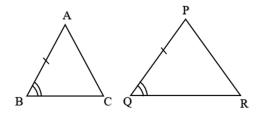
Q.18) In the adjoining figure, pair of triangles in test of congruence SAS? Verify?



Solution - \triangle PQR \cong \triangle SRQ..... (S - A - S test)

seg PR \cong seg SQ --- congruence of triangle in similar sides \angle QPR \cong \angle RSQ

and ∠ PRQ ≅ ∠ SQR..... --- congruence of triangle in similar angles
Q. 19) In the adjoining figure pair of triangles in test of
congruence ASA? Verify.



Solution - $\ \Delta ABC \cong \Delta PQR..... (A - S - A test)$

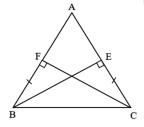
 \angle ABC \cong \angle PQR..... (Pair of similar congruence angles)

 $seg BC \cong seg QR$

 \angle ACB \cong \angle PRQ

 $\therefore \triangle ABC \cong \triangle PQR$

Q.20) In Δ ABC , BE and CF are the vertices and AC and AB are the equal sides then show that Δ ABE $\cong \Delta$ ACF



Solution - In \triangle ABE and \triangle ACF]

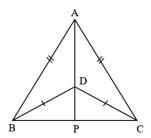
 $\angle AEB \cong \angle AFC$

... Each \angle E and \angle F = 90° \Rightarrow BE \bot AC and CF \bot AB)

 $\therefore BE = CF.....$ (given)

 $\therefore \triangle ABE \cong \triangle ACF..... (AAS test)$

Q. 21) Δ ABC and Δ DBC are two isosceles triangles on the same base BC and the vertices A and D are on the same side of BC If AD is extended to intersect BC at P then show that Δ ABD $\cong \Delta$ ACD



Solution –

In \triangle ABD and \triangle ACD we have given)

$$AB = AC.....$$
 (given)

$$AD = AD$$
 ---- Common

$$BD = CD.....$$
 (given)

$$\therefore \triangle ABD \cong \triangle ACD..... (SSS test)$$

Q.22) In
$$\triangle$$
 ABC, \angle A $- \angle$ B = 33° and \angle B $- \angle$ C = 18°. Find the name of the angle of a triangle.

Solution-

$$\angle A - \angle B = 33^{\circ} \text{ and } \angle B - \angle C = 18^{\circ}$$

$$\therefore \angle A = 33^{\circ} + \angle B \text{ and } \angle C = \angle B - 18^{\circ}.....(2)$$

Sum of angle of triangle is 180^o

$$\therefore \angle A + \angle B + \angle C = 180^{\circ}$$

$$(33^{0} + \angle B) + \angle B - 18^{0} + \angle B = 180^{0}$$

$$(33^{\circ} + \angle B + \angle B - 18^{\circ} + \angle B = 180^{\circ}$$

$$3 \angle B + 33^{0} - 18^{0} = 180^{0}$$

$$3 \angle B + 15^0 = 180^0$$

$$3 \angle B = 180^{0} - 15^{0}$$

$$3 \angle B = 165^{0}$$

$$\angle B = \frac{165}{3}$$

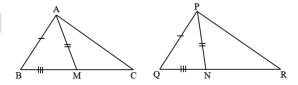
$$\angle B = 55$$

$$\therefore \angle A = 33 + \angle B = 33 + 55 = 88^{\circ}$$

and
$$\angle C = \angle B - 18^0 = 55^0 - 18^0 = 37^0$$

$$\therefore \angle A = 88^{\circ}, \angle B = 55^{\circ} \text{ and } \angle C = 37^{\circ}$$

- Q.23) Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of Δ PQR. Show that
 - 1) \triangle ABM \cong \triangle PQN (2) \triangle ABC \cong \triangle PQR



Solution – Given Two sides AB and BC and medians AM of one triangle ABC are respectively equal to side PQ and QR and median PN of Δ PQR

Prove : (i) In \triangle ABM and \triangle PQN

$$AB = PQ.....(I)(Given)$$

$$AM = PN.....(II)(Given)$$

$$BC = QR$$

2BM = 2QN.... (M and N are the midpoints of BC and QR)

$$BM = QN....(3)$$

From (i), (ii) and (iii)

 \triangle ABM \cong \triangle PQN..... (Test of SSS)

(ii) \triangle ABM \cong \triangle PQN.....(Proved in(i) above)

$$\therefore$$
 \angle ABM \cong \angle PQN..... (C.P.C.T)

$$\angle ABC \cong \angle PQR.....(IV)$$

In \triangle ABC and \triangle PQR

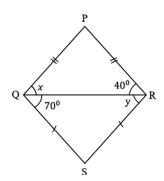
$$AB = PQ.....(Given)$$

$$BC = QR....(Given)$$

$$\angle$$
 ABC \cong \angle PQR...... From IV

$$\therefore \triangle ABC \cong \triangle PQR \dots (Test of SAS)$$

Q.24) In the adjoining figure, find the value of x and y. Find the measure of \angle PQS and \angle PRS



Solution – In
$$\triangle$$
 PQR seg PQ \cong seg PR...

$$seg PQ \cong seg PR..... (Given)$$

$$\angle$$
 PQR \cong \angle PRS..... (Theorem of isosceles triangle)

$$\angle PRS = 40^0 \dots (Given)$$

$$\therefore$$
 ∠ PQR = 40°

$$x = 40^{0}$$

$$\angle RQS = 70^{0}$$

$$\angle PQS = \angle PQR + \angle RQS.....$$
 (Postulate of sum of triangle)

$$\angle PQS = 40^0 + 70^0$$

$$\angle PQS = 110^0$$

In A RQS

$$seg SQ \cong seg SR ----- given$$

$$\therefore$$
 \angle SRQ \cong \angle SQR..... (Theorem of isosceles triangle)

$$\angle$$
 SRQ = 70°

$$\therefore \angle SRQ = 70^{\circ}, y = 70^{\circ}$$

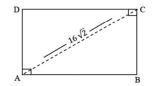
$$\angle$$
 PRS = \angle PRQ + \angle SRQ..... (Postulate of sum of triangle)

$$\therefore \angle PRS = 40^0 + 70^0$$

$$\angle PRS = 110^{0}$$

$$\therefore x = 40^{\circ} \text{y} = 70^{\circ} \ \angle PQS = 110^{\circ} \ \angle PRS = 110^{\circ}$$

Q.25) If hypotenous $16\sqrt{2}$ cm then find the side of quadrilateral.



Solution - □ABCD is a quadrilateral.

$$\therefore \angle B = 90^0 \dots$$
 (Angle of quadrilateral)

And AB = BC....(1) Side of quadrilateral

In right angled triangle \triangle ABC

$$AB^2 + BC^2 = AC^2$$
..... (Theorem of Pythagoras)

$$AB^2 + AB^2 = (16\sqrt{2})^2$$
..... (AB = BC)

$$2 AB^2 = 256 \times 2$$

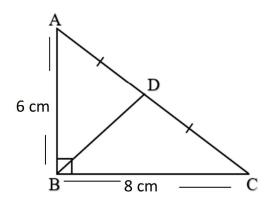
$$AB^2 = \frac{256 \times 2}{2}$$

$$AB^2 = 256$$
 (Square root of both sides)

$$AB = 16$$

∴Side of quadrilateral is 16 cm

Q.26) In $\triangle ABC \angle B = 90^{\circ}$, AB = 6 cm BC = 8 cm and seg BD is the median then find BD.



Solution – In \triangle ABC , \angle B = 90⁰

According to Pythagoras theorem

$$AC^2 = AB^2 + BC^2$$

$$= (6)^2 + (8)^2$$

$$= 36 + 64$$

$$AC^2 = 100$$

: BD is the median of AC-

$$\therefore BD = \frac{1}{2} \times AC$$

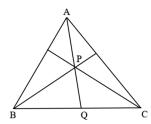
$$=\frac{1}{2}\times 10$$

$$\therefore BD = 5$$

$$\therefore$$
 BD = 5 units

Q.27) In the adjoining figure, Δ ABC of P is a congruence. If

PQ = 3.5 cm then find the length of AP and PQ



Solution:

Δ ABC of P is a concurrence divides each median in the ratio 2:1

AQ is median

$$PQ = 3.5 \text{ cm}$$

$$\frac{AP}{PQ} = \frac{2}{1}$$

$$\frac{AP}{3.5} = \frac{2}{1}$$

$$AP = \frac{2 \times 3.5}{1}$$

$$\therefore$$
 AP = 6.5 cm

$$AQ = AP + PQ$$

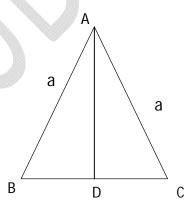
$$= 6.5 + 3.5$$

$$= 10 cm$$

$$\therefore$$
 AP = 6.5 cm and AQ = 10 cm

Q.28) Length of each side of equilateral triangle is 'a' units.

Find the height of triangle.



Solution:

In Δ ABC be an equilateral triangle-

$$\therefore AB = BC = AC$$

Suppose,
$$AB = BC = AC = a$$

Seg AD ⊥ side BC

$$\therefore$$
 $\angle ADB = 90^{0}$

In \triangle ADB,

$$\angle ADB = 90^{\circ}$$

 \angle ABC = 60^0(Angle of an equilateral triangle)

$$\therefore$$
 \angle BAD = 30⁰.....(Remaining angle of triangle)

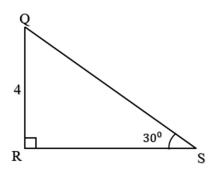
$$\therefore 30^0 - 60^0 - 90^0 \dots$$
 (By triangle theorem))

$$AD = \frac{\sqrt{3}}{2}AB....$$

$$\therefore AD = \frac{\sqrt{3}}{2}a$$

∴ Height of equilateral triangle = $\frac{\sqrt{3}}{2}a$

Q.29) In
$$.\Delta$$
 QRS \angle R = 90°, \angle S = 30°, QR = 4 units then find RS and QS



Solution - Δ QRS is $30^{0} - 60^{0} - 90^{0}$ triangle-

$$QR = \frac{1}{2}QS.....$$
 (side opposite to 30°)

$$4 = \frac{1}{2}QS$$

$$4 \times 2 = QS$$

$$8 = QS$$

$$\therefore$$
 QS = 8 units

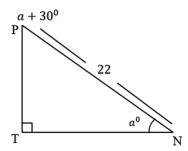
$$RS = \frac{\sqrt{3}}{2} \times QS....$$
 Side opposite to 60°)

$$RS = \frac{\sqrt{3}}{2} \times 8$$

$$RS = 4\sqrt{3}$$
 units

∴ QS = 8 units RS =
$$4\sqrt{3}$$
 units.

Q.30) In
$$\triangle PTN$$
, $\angle T = 90^{\circ}$, $\angle N = a^{\circ}$, $\angle P = (a + 30)^{\circ}$
If $PN = 22$ then find PT and TN .



Solution:

In Δ PTN

$$\angle P + \angle T + \angle N = 180^0$$
..... (Sum of angles of triangles is 180^0)

$$(a + 30)^0 + 90^0 + a^0 = 180^0$$

$$a + 30^{0} + 90^{0} + a^{0} = 180^{0}$$

$$2a^0 + 120^0 = 180^0$$

$$2a^0 = 180^0 - 120^0$$

$$2a^0 = 60^0$$

$$a^0 = \frac{60^0}{2}$$

$$a^0 = 30^0$$

$$\angle N = a^0 = 30^0$$

$$\angle P = (a + 30)^0 = a^0 + 30^0 = 30^0 + 30^0 = 60^0$$

 Δ PTN is $30^{0} - 60^{0} - 90^{0}$ of triangle-

$$PT = \frac{1}{2} \times PN....$$
 (side opposite to 30°)

$$=\frac{1}{2}\times 22$$

$$\therefore$$
 PT = 11units

$$TN = \frac{\sqrt{3}}{2} \times PN.....$$
 (side opposite to 60°)

$$=\frac{\sqrt{3}}{2}\times22$$

 $TN = 11 \sqrt{3} \text{ units}$

∴ PT = 11 units TN =
$$11\sqrt{3}$$
 units

Q.31) In \triangle ABCs AB = 5cm] BC= 8 cm] AC = 10 cm. Write all its angles in the descending order of their measure.

Solution – In \triangle ABC $\}$

$$AB = 5cm$$
, $BC = 8cm$] $AC = 10 cm$

$$\therefore AC > BC > AB.....(1)$$

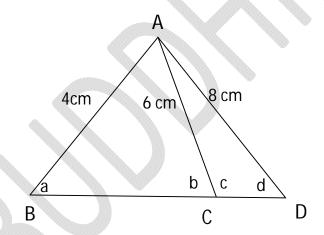
 $\therefore \angle B > \angle A \dots$ (II)(Angle opposite to greater side is greater)

$$BC > \angle AB.....$$
 From II

 \therefore $\angle A > \angle C$ ------ From III (Angle opposite to greater side)

$$\angle B > \angle A > \angle C$$
 ----- (From II and III)

Q.32) In the figure AB = 4 cm] AC = 6 cm] AD = 8 cm. Arrange the angles a, b, c, d in the ascending order of their measure.



Solution − In % ∆ ABC

$$AB = 4 \text{ cm}, AC = 6 \text{cm}$$

$$\therefore$$
 \angle ACB $<$ \angle B..... (Angle opposite to greater side is greater)

$$\therefore$$
 b $\angle a$

$$\therefore a > b \dots (i)$$

 \angle ACD is an exterior angle of \triangle ABC

$$\therefore$$
 \angle ACD $> \angle$ ABC...... (Property of exterior angles)

$$\therefore C > a \dots (ii)$$

But a > b.....(From I) --- III

$$\therefore$$
 C > a > b (IV) (From I, II and III)

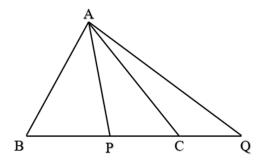
 \angle ACB is an exterior angle of \triangle ACD

$$\angle$$
 ACB $> \angle$ ADC..... (Exterior angle property)

∴
$$b > d....(V)$$

(From IV and V)

Q.33) In figure AB = AC prove that PA < AG



Solution - \angle APC is an exterior angle \triangle ABP

$$\therefore \triangle APC > \angle B.....(I)$$
 (Exterior angle property)

$$\angle B = \angle ACB \dots (II) \dots [\Delta ABC AB = AC, --- given$$

That means, $\angle B = \angle ACP......$ (III)

$$\therefore$$
 \angle APC $>$ \angle ACP...... (From (I) and II)

$$\therefore$$
 AC > AP...... (IV) (Side opposite to greater angle is greater)

$$\therefore$$
 AB > AP..... (V) [As AB = AC --- Given]

i.e.
$$AP < AB$$

 \angle ACB is an exterior angle of \triangle ACQ.

$$\therefore$$
 \angle ACB > AQC (Property of exterior angle)

But,

$$\therefore \angle ACB \cong \angle B \dots (From II)$$

$$\therefore \angle B > \angle AQC$$

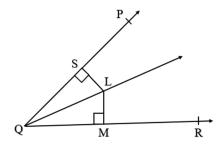
$$\therefore$$
 AQ > AB..... (Side opposite to greater angle is greater)

$$\therefore AB < AQ....(VI)$$

$$\therefore AP < AB < AQ \dots$$
 [From (V) and (VI)

$$\therefore AP < AQ$$
 Proved

Q.34) In the figure point L is in interior of \angle PQR. \angle S \perp ray QP, LM \perp rayQR , LS = LM = 5cm, \angle PQR = 76°find \angle PQL



Solution – LS \perp ray QP and LM \perp ray QR

$$LS = LM...$$
 (Given)

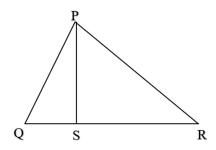
Point L is on the bisector of ∠ PQR(By angle bisector theorem)

$$\angle PQL = \frac{1}{2} \angle PQR$$

$$\angle PQL = \frac{1}{2} \times 76^{0} \dots (\angle PQR = 76^{0})$$
 (Given)

$$\angle PQL = 38^{\circ}$$

Q.35) In the adjoining figure ∠ PQS = 40°, ∠PSR = 80°
 ∠PRS = 35°, Write side PQ, side PS, side PR in descending order of their lengths. Justify the answer.



Solution-

In \triangle PQR,

$$\angle Q > \angle R \ (\angle Q = 30^{\circ}, \angle R = 35).....$$
 (Given)

 \therefore PR > PQ......(I) (Side opposite to greater angle is greater)

$$\therefore$$
 \angle PSQ + \angle PSR = 180^{0} (Angles in linear pair)

$$\therefore \angle PSQ + 80^0 = 180^0$$

$$\therefore \angle PSQ = 180^{0} - 80^{0}$$

$$\therefore$$
 \angle PSQ = 100°

In \triangle PSQ

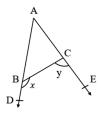
$$\angle PSQ > \angle Q.....(\angle PSQ = 100^{\circ}, \angle Q = 40^{\circ})$$

 $\therefore PQ > PS.....$ (II) (Side opposite to greater angle is greater)

∴ PR
$$> PQ > PS$$
----- (From I and II)

Q.36) In the given figure, the sides AB and AC of \triangle ABC has been extended to D and E respectively. If x > y. Show that \triangle AB > AC.

Solution –



$$x > y \Rightarrow -x < -y$$

$$\Rightarrow$$
 (180 - x) < (180 - y)

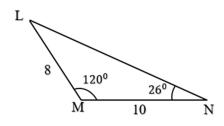
$$\Rightarrow$$
 \angle ABC $<$ \angle ACB

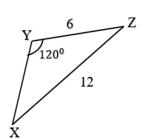
$$\Rightarrow$$
 \angle ACB $>$ \angle ABC

$$\Rightarrow$$
 AB $>$ AC...... (Sides opposite to larger angle is larger)

Q.37) In the adjoining figure, Δ LMN \cong Δ ZYX. Measure of the angles and the length of the sides are shown in the figure.

Find $\angle N$ and $\angle Z$





$$\therefore \angle L = \angle Z$$
, $\angle M = \angle Y$, $\angle N = \angle X$(I)

And

$$\frac{LM}{ZY} = \frac{MN}{YX} = \frac{LN}{ZX}$$
.....(II)

$$\frac{LM}{ZY} = \frac{LN}{ZX}$$

$$\therefore \frac{8}{6} = \frac{LN}{12}$$

$$\therefore LN = \frac{8 \times 12}{6} = \frac{84}{6} = 16 \text{ units}$$

In Δ LMN

$$\angle L + \angle M + \angle N = 180^{0}$$
..... (Sum of angles of triangles is 180^{0})

$$\angle L + 120^{0} + 26^{0} = 180^{0}$$

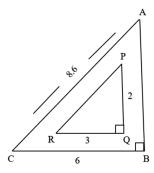
$$\therefore \angle L + 146^0 = 180^0$$

$$\angle L = 180^{0} - 146^{0}$$

$$\angle L = 34^{\circ}$$

Now,
$$\angle L = \angle Z = 34^0$$
..... [From (1)]

Q.38) Observe the figure and find AB and PR.



Solution -

$$\angle B = \angle Q = 90^{0}$$
----- given $\angle C = R$, ----- given

$$\therefore \angle A = \angle P$$
-----given

- \therefore \triangle PQR and \triangle ABC are similar triangles
- : Their sides are in the same proportion

$$\therefore \frac{PQ}{AB} = \frac{QR}{BC} = \frac{PR}{AC}$$

$$\therefore \frac{2}{AB} = \frac{3}{6} = \frac{PR}{8.6}$$

$$\therefore \frac{2}{AB} = \frac{3}{6}$$

$$\therefore AB = \frac{6 \times 2}{3}$$

AB = 4 units.

And

$$\therefore \frac{PR}{8.6} = \frac{3}{6}$$

$$\therefore AB = \frac{6 \times 2}{3}$$

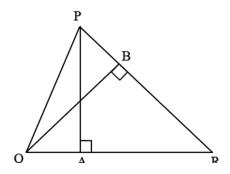
$$\therefore PR = \frac{3 \times 8.6}{6}$$

 \therefore PR = 4.3 units

Q.39) In \triangle PQR seg PA \perp side QR Q – A – R

seg QB \perp side PR ,P - B - R

Then prove that \triangle PAR \sim \triangle QBR



Solution – In \triangle PAR and \triangle QBR,

$$\angle PAR \cong \angle QBR......(Each 90^0)$$

$$\angle R \cong \angle R....$$
 (Common angle)

$$\triangle$$
 PAR \sim \triangle QBR (A-A test)

Q.40) If Δ LMN ~ Δ PQR complete the following activity.

$$1) \angle R \cong \square \angle Q \cong \square \angle P \cong \square$$

$$(2)\frac{LM}{\Box} = \overline{QR} = \overline{\Box}$$

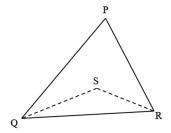
Solution -

 Δ LMN ~ Δ PQR

$$1) \angle R \cong \boxed{\angle N} \angle Q \cong \boxed{\angle M} \angle P \cong \boxed{\angle L}$$

2)
$$\frac{LM}{PQ} = \frac{MN}{QR} = \frac{LN}{PR}$$
 (corresponding angles of similar triangles)

Q.41) In \triangle PQR If PQ > PR and bisectors of \angle Q and \angle R intersect at S.Then show that SQ > SR. Fill in the blanks.



Proof
$$- \angle SQR =$$
 (i) (Ray QS bisects $\angle PQR$)
 $\angle SRQ = \frac{1}{2} \angle PRQ....$ (ii) (Ray RS bisects $\angle PRQ$)

```
In \triangle PQR
```

$$PQ > PR.....$$
 (Given)

$$\therefore \angle R > \angle Q \dots$$

$$\therefore \frac{1}{2} (\angle R) > \frac{1}{2} (\angle Q) \dots (Multiplying both sides by \frac{1}{2})$$

$$\therefore$$
 \angle SRQ $>$ (III) ... (From (i) and (ii))

In Δ SQR

$$\angle$$
 SRQ > \angle *SQR*...... [From (iii)]

Solution

$$\angle SQR = \boxed{\frac{1}{2}} \angle PQR....$$
 (i) (Ray QS bisects $\angle PQR$)

$$\angle$$
 SRQ = $\frac{1}{2}$ \angle PRQ....(ii) (Ray RS bisects \angle PRQ)

In \triangle PQR

$$PQ > PR$$
.....(Given)

$$\angle Q$$
......Angle opposite to greater side is greater

$$\therefore \frac{1}{2} (\angle R) > \frac{1}{2} (\angle Q) \dots (Multiplying both sides by \frac{1}{2})$$

$$\therefore$$
 \angle SRQ $>$ $\boxed{\angle SQR}$ (III) ... (From (i) and (ii))

In Δ SQR

$$\angle$$
 SRQ > \angle SQR...... [From (iii)]

 \therefore SQ > SR...... Side opposite to greater angle is greater

Q.42) Triangle ABC has sides of length 7.8 and 9 units while Δ PQR has perimeter of 360 units. If Δ ABC is similar to Δ PQR then find find then find the sides of Δ PQR

Solution: Sides of \triangle ABC are of 7,8 and 9 units-

Perimeter of $\triangle PQR = 360$

$$x + y + z = 360...$$
 (i)

Δ ABC ~ Δ XYZ

$$\therefore \frac{7}{x} = \frac{8}{y} = \frac{9}{z}$$
..... (Corresponding sides of similar triangles)

$$\therefore \frac{7}{x} = \frac{8}{y} = \frac{9}{z} = \frac{7+8+9}{x+y+z}.....$$
 (Property of equal ratios)

$$\therefore \frac{7}{x} = \frac{8}{y} = \frac{9}{z} = \frac{24}{360}$$

$$\therefore \frac{7}{x} = \frac{8}{y} = \frac{9}{z} = \frac{1}{15}$$

Now,

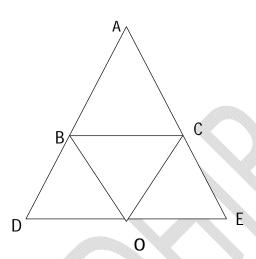
$$\frac{7}{x} = \frac{1}{15}$$
 $\therefore x = 7 \times 15 = 105$

$$\frac{8}{v} = \frac{1}{15}$$
 $\therefore y = 8 \times 15 = 120$

$$\frac{9}{7} = \frac{1}{15}$$
 \therefore z = 9 × 15 = 135

 \therefore Corresponding sides of \triangle PQR are 105 units,120 units,135 units respectively.

Q.43) In a \triangle ABC, the sides AB and AC are produced to point D and E respectively. The bisector \angle DBC and \angle ECB Intersect at a point o. prove that \angle BOC = $(90^{\circ} - \frac{1}{2} \angle A)$.



Solution:

Since ABD is a line, we have

$$\angle B + \angle CBD = 180^{\circ}$$
 (Linear pair)

$$\frac{1}{2} \angle B + \frac{1}{2} \angle CBD = 90^{\circ}$$

$$\angle CBO = (90^{\circ} - \frac{1}{2} \angle A).$$
 ----- (i)

Again, ACE is a straight line

$$\therefore \angle C + \angle BCE = 180^{\circ}$$
 (Linear pair)

$$\frac{1}{2} \angle C + \frac{1}{2} \angle BCE = 90^{\circ}$$

$$\frac{1}{2} \angle C + \angle BCO = 90^{\circ}$$

$$\angle BCO = (90^{\circ} - \frac{1}{2} \angle C)$$
. ---- (ii)

We know that the sum of the angle of a triangle is 180°

From \triangle OBC, we get

$$\angle CBO + \angle BCO + \angle BOC = 180^{\circ}$$

$$(90^{\circ} - \frac{1}{2} \angle B) + (90^{\circ} - \frac{1}{2} \angle C) + \angle BOC = 180^{\circ}$$
 (using (i)and (ii))

$$180^{\circ \circ} - \frac{1}{2}(\angle B + \angle C) + \angle BOC = 180^{\circ}$$

$$\angle BOC = \frac{1}{2}(\angle B + \angle C)$$

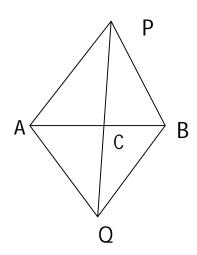
$$\angle BOC = \frac{1}{2}(\angle A + \angle B + \angle C) - \frac{1}{2}\angle A$$
 (adding and subtracting $\frac{1}{2}\angle A$)

$$\angle BOC = (\frac{1}{2} \times 180^{\circ}) - \frac{1}{2} \angle A \quad (\therefore \angle A + \angle B + \angle C = 180^{\circ})$$

$$\angle BOC = (90^{\circ} - \frac{1}{2} \angle A).$$

Hence
$$\angle BOC = (90^{\circ} - \frac{1}{2} \angle A)$$
.

Q.44) In the given figure, AB is a line segment P and Q are points an opposite sides of AB such that each of them is equidistant from the point A and B show that line PQ is Perpendicular bisector of AB



Solution:

Given: A line segment AB and two points P and Q such that

$$PA = PB$$
 and $QA = QB$

Prove: let AB and PQ intersect at C. Then we have to prove

That AC =BC and
$$\angle$$
ACP = 90°

Proof: In $\triangle PAQ$ and $\triangle PBQ$ we have,

$$PA = PB$$

$$QA = QB - Given$$

$$PQ = PQ$$
 -----(Common)

$$\therefore \Delta PAQ \cong \Delta PBQ ----- (by SSS)$$

$$\angle APQ = \angle BPQ - (i)$$

Now in \triangle PAC and \triangle PBC we have

$$PA = PB ---- (Given)$$

$$\angle APC = \angle BPC - (\angle APQ = \angle BPQ \text{ in (i)})$$

$$\therefore \triangle PAC \cong PBC$$
 (by SSS)

$$AC = BC$$
 ----- (ii)

And
$$\angle ACP = \angle BCP$$
 ----- (iii)

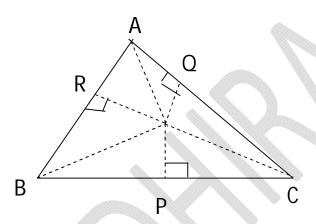
But
$$\angle ACP + \angle BCP = 180^{\circ}$$
 ----- (linear pair)

$$\therefore 2 \angle ACP = 180^{\circ}$$
 ----- (using iii)

$$\angle ACP = 90^{\circ}$$

Hence ,PQ is the perpendicular bisector of AB.

Q.45) In the given figure, the bisectors of $\angle B$ and $\angle C$ of $\triangle ABC$ meet at I. If IP $\perp BC$, IQ $\perp CA$ and IR $\perp AB$ Prove that (i) IP= IQ = IR (ii) IA bisects $\angle A$.



Solution:

Given : A \triangle ABC in which BI and CI are the bisectors of \angle B And \angle C respectively. IP \bot BC, IQ \bot CA and IR \bot AB

To Prove: (i) IP = IQ = IR (ii) IA bisects $\angle A$.

Proof: i) In \triangle IPC and \triangle IQC, we have

$$\angle IPC = \angle IQC = 90^{\circ}$$
----- (given)
 $\angle ICP = \angle ICQ$ ----- (CI is the bisector of $\angle C$)
 $CI - CI$ ----- (common)

$$\therefore \Delta IPC \cong \Delta IQC ---- (by AAS)$$

$$\therefore$$
 IP = IQ

Similarly, IQ = IR

Hence IP = IQ = IR

ii) In $\triangle IQA$ and $\triangle IRA$, we have

$$IQ = IR$$
 ----- (proved in i)

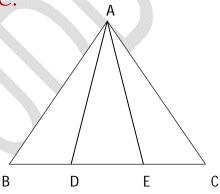
$$\angle IQA = \angle IRA$$
 (each 90°)

Hypotenuse IA = hypotenuse IA (common)

- $\therefore \Delta IQA \cong \Delta IRA$
- \therefore $\angle IQA \cong \angle IRA$

Hence, IA bisects ∠A

Q.46) In the figure D and E points on the base BC of a \triangle ABC Such that AD = AE and \angle BAD = \angle CAE. Prove that



Solution:

Given: D and E are points on the base BC of a \triangle ABC Such that AD = AE and \angle BAD = \angle CAE.

To Prove : AB = AC

Proof : In \triangle ADE,

$$\therefore$$
 AD = AE ----- (Given)

 \therefore \angle ADE = \angle AED --- (i) (angles opposite to equal sides of a triangle are equal)

In \triangle ABD,

$$\angle ADE = \angle BAD + \angle ABD$$
 ----- (ii)

(An exterior angle of a triangle is equal to the sum of its interior opposite angles)

In \triangle AEC,

$$\angle AED = \angle CAE + \angle ACE$$
 ----- (iii)

(An exterior angle of a triangle is equal to the sum of its two interior opposite angles)

From (i), (ii) and (iii)

$$\angle BAD + \angle ABD = \angle CAE + \angle ACE$$

$$\angle ABD = \angle ACE$$
 (: $\angle BAD = \angle CAE$ given)

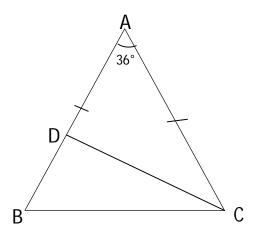
$$\angle ABC = \angle ACB$$

$$AB = AC$$

(sides opposite to equal angles of a triangle are equal)

Q.47) In $\triangle ABC$, AB = AC, $\angle A = 36^{\circ}$. the internal bisector of

 $\angle C$ meets at D. Prove that AD = BC.



Solution:

Given : In $\triangle ABC$. $AB = AC \angle A = 36^{\circ}$. The internal bisector of $\angle C$ meets AB at D.

To Prove : AD = BC

Proof: In ΔABC,

$$\angle$$
 BAC + \angle ABC + \angle ACB= 180°

(sum of the angle of a triangle is 180°)

$$36^{\circ} + \angle ABC + \angle ACB = 180^{\circ}$$

In ΔABC,

$$AB = AC$$
 ----- (given)

 $\therefore \angle ABC = \angle ACB$ ----- (ii) (Angles opposite to equal sides of a triangle are equal)

From (i) and (ii)

$$\angle ABC = \angle ACB$$

$$=\frac{144}{2} = 72^{\circ}$$
 ----- (iii)

$$\angle ACD = \angle BCD$$

$$=\frac{1}{2} = 72^{\circ} = 36^{\circ}$$
 ----- (IV)

In \triangle ACD,

$$\therefore$$
 \angle DAC = \angle DCA

$$AD = DC$$
 ---- (V)

(Sides opposite to equal angles of a triangle are equal)

In \triangle ADC,

$$\angle$$
CDB = \angle DAC + \angle DCA (Exterior angle theorem)

$$\angle CDB = 36^{\circ} + 36^{\circ} = 72^{\circ} - (VI)$$

In Δ DBC,

$$\therefore \angle BDC = \angle DBC$$

$$DC = BC$$
 ----- (VII)

(Sides opposite to equal angles of a triangle are equal)

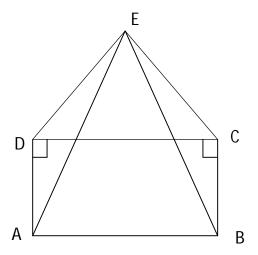
From (V) and (VII)

$$AD = BC$$

Q.48) In figure ABCD is square and ∠ DEC is an equilateral

Triangle. Prove that

I)
$$\triangle$$
 ADE \cong \triangle BCE ii) AE = BE iii) \angle DAE = 15°



Solution:

Given: ABCD is square and Δ DEC is an equilateral triangle.

To Prove: I) \triangle ADE \cong \triangle BCE ii) AE = BE iii) \angle DAE = 15°

Proof: In \triangle ADE and \triangle BCE

$$AD = BC - - - (::ABCD \text{ is a square } ::AB = BC = CD = DA)$$

DE = CE ----- (
$$\triangle$$
EDC is equilateral : ED = DC = CE)

$$\angle$$
 EDA = \angle ECB

∴ ∆EDC is equilateral

∴ ∆ABCD is a square

Adding (i) and (ii)

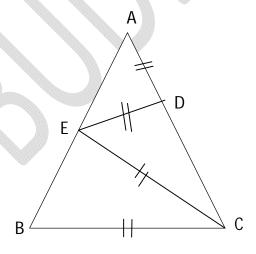
$$\therefore$$
 \angle EDC + \therefore \angle ADC = \therefore \angle ECD + \therefore \angle BCD

$$\therefore \triangle ADE \cong \triangle BCE ----- (by SAS)$$

$$\triangle ADE \cong \triangle BCE ----- (Proved in i)$$

$$\angle ADE + \angle DAE + \angle DEA = 180^{\circ}$$
 (Angle sum property of a triangle)
($\angle ADC + \angle EDC$) + $\angle DAE + \angle DEA = 180^{\circ}$
($90^{\circ} + 60^{\circ}$) + $\angle DAE + \angle DEA = 180^{\circ}$
 $\angle DAE + \angle DEA = 30^{\circ}$ ----- (ii)
From (i) and (ii)

Q.49) In the given figure AB = AC. D is a point on AC and E on AB such that AD = ED = EC = BC prove that $\angle A$: $\angle B = 1:3$



 $\angle DAE = 15^{\circ} = \angle DEA$

Solution:

Let
$$\angle A = x^{\circ}$$
 ----- (i)

```
In \( \Delta AED \)
AD = ED - (Given)
\angle A = \angle DEA ----- (Angles opposite to equal sides of a
                     triangle are equal)
 x^{\circ} = \angle DEA
\angle DEA = x^{\circ}
In ΔEDC,
 \angle EDC = \angle DEA + \angle A (An exterior angle of a triangle
              is equal to the sum of its two interior opposite angle)
   = x^{\circ} + x^{\circ} (from (i) and (ii)
    = 2x^{\circ} ----- (iii)
In \triangleCED,
    :EC = ED
    \therefore \angleECD = \angleEDC (Angles opposite to equal sides of a
                                         triangle are equal)
    \therefore \angleECD = 2x^{\circ} ----- (iv) (from iii)
In ΔAEC,
    \angle BEC = \angle ECD + \angle EAC (An exterior angle of a triangle
             is equal to the sum of its two interior opposite angle)
    \angle BEC = 2x^{\circ} + x^{\circ} (from iii and (i))
   \therefore \angle BEC = 3x^{\circ}
```

$$BC = CE$$

 $\angle CBE = \angle BEC$ (Angles opposite to equal sides of a triangle are equal)

$$\angle B = 3x^{\circ}$$
 ----- (vi) (from V)

$$\therefore \angle BEC = 3x^{\circ}$$

$$\angle B = 3 \angle A - \cdots - (from i)$$

$$\angle A : \angle B = 1 : 3.$$

Q.50) If Δ LMN ~ Δ PQR complete the following activity.

$$2)\frac{LM}{\square} = \overline{\overline{QR}} = \overline{\square}$$

Solution -

Δ LMN ~ Δ PQR

$$1) \angle R \cong \boxed{\angle N} \angle O \cong \boxed{\angle M} \angle P \cong \boxed{\angle L}$$

2)
$$\frac{LM}{|PQ|} = \frac{|MN|}{QR} = \frac{|LN|}{|PR|}$$
 (corresponding angles of similar triangles)
